Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Visual speech recognition (VSR) aims to transcribe spoken content from silent lip-motion videos and is particularly challenging in Mandarin due to severe viseme ambiguity and pervasive homophones. We propose VALLR-Pin, a two-stage Mandarin VSR framework that extends the VALLR architecture by explicitly incorporating Pinyin as an intermediate representation. In the first stage, a shared visual encoder feeds dual decoders that jointly predict Mandarin characters and their corresponding Pinyin sequences, encouraging more robust visual-linguistic representations. In the second stage, an LLM-based refinement module takes the predicted Pinyin sequence together with an N-best list of character hypotheses to resolve homophone-induced ambiguities. To further adapt the LLM to visual recognition errors, we fine-tune it on synthetic instruction data constructed from model-generated Pinyin-text pairs, enabling error-aware correction. Experiments on public Mandarin VSR benchmarks demonstrate that VALLR-Pin consistently improves transcription accuracy under multi-speaker conditions, highlighting the effectiveness of combining phonetic guidance with lightweight LLM refinement.
Speech Emotion Recognition (SER) has significant potential for mobile applications, yet deployment remains constrained by the computational demands of state-of-the-art transformer architectures. This paper presents a mobile-efficient SER system based on DistilHuBERT, a distilled and 8-bit quantized transformer that achieves approximately 92% parameter reduction compared to full-scale Wav2Vec 2.0 models while maintaining competitive accuracy. We conduct a rigorous 5-fold Leave-One-Session-Out (LOSO) cross-validation on the IEMOCAP dataset to ensure speaker independence, augmented with cross-corpus training on CREMA-D to enhance generalization. Cross-corpus training with CREMA-D yields a 1.2% improvement in Weighted Accuracy, a 1.4% gain in Macro F1-score, and a 32% reduction in cross-fold variance, with the Neutral class showing the most substantial benefit at 5.4% F1-score improvement. Our approach achieves an Unweighted Accuracy of 61.4% with a quantized model footprint of only 23 MB, representing approximately 91% of the Unweighted Accuracy of a full-scale baseline. Cross-corpus evaluation on RAVDESS reveals that the theatrical nature of acted emotions causes predictions to cluster by arousal level rather than by specific emotion categories - happiness predictions systematically bleed into anger predictions, and sadness predictions bleed into neutral predictions, due to acoustic saturation when actors prioritize clarity over subtlety. Despite this theatricality effect reducing overall RAVDESS accuracy to 46.64%, the model maintains robust arousal detection with 99% recall for anger, 55% recall for neutral, and 27% recall for sadness. These findings demonstrate a Pareto-optimal tradeoff between model size and accuracy, enabling practical affect recognition on resource-constrained mobile devices.
Assistive electric-powered wheelchairs (EPWs) have become essential mobility aids for people with disabilities such as amyotrophic lateral sclerosis (ALS), post-stroke hemiplegia, and dementia-related mobility impairment. This work presents a novel multi-modal EPW control system designed to prioritize patient needs while allowing seamless switching between control modes. Four complementary interfaces, namely joystick, speech, hand gesture, and electrooculography (EOG), are integrated with a continuous vital sign monitoring framework measuring heart rate variability, oxygen saturation (SpO2), and skin temperature. This combination enables greater patient independence while allowing caregivers to maintain real-time supervision and early intervention capability. Two-point calibration of the biophysical sensors against clinical reference devices resulted in root mean square errors of at most 2 bpm for heart rate, 0.5 degree Celsius for skin temperature, and 1 percent for SpO2. Experimental evaluation involved twenty participants with mobility impairments executing a total of 500 indoor navigation commands. The achieved command recognition accuracies were 99 percent for joystick control, 97 percent plus or minus 2 percent for speech, and 95 percent plus or minus 3 percent for hand gesture, with an average closed-loop latency of 20 plus or minus 0.5 milliseconds. Caregivers receive real-time alerts through an Android application following encrypted cloud transmission of physiological data. By integrating multi-modal mobility control with cloud-enabled health monitoring and reporting latency and energy budgets, the proposed prototype addresses key challenges in assistive robotics, contributes toward compliance with ISO 7176-31 and IEC 80601-2-78 safety standards, and establishes a foundation for future adaptive machine learning enhancements.
Automatic speech recognition (ASR) has witnessed remarkable progress in recent years, largely driven by the emergence of LLM-based ASR paradigm. Despite their strong performance on a variety of open-source benchmarks, existing LLM-based ASR systems still suffer from two critical limitations. First, they are prone to hallucination errors, often generating excessively long and repetitive outputs that are not well grounded in the acoustic input. Second, they provide limited support for flexible and fine-grained contextual customization. To address these challenges, we propose Index-ASR, a large-scale LLM-based ASR system designed to simultaneously enhance robustness and support customizable hotword recognition. The core idea of Index-ASR lies in the integration of LLM and large-scale training data enriched with background noise and contextual information. Experimental results show that our Index-ASR achieves strong performance on both open-source benchmarks and in-house test sets, highlighting its robustness and practicality for real-world ASR applications.
Speech-based machine learning systems are sensitive to noise, complicating reliable deployment in emotion recognition and voice pathology detection. We evaluate the robustness of a hybrid quantum machine learning model, quanvolutional neural networks (QNNs) against classical convolutional neural networks (CNNs) under four acoustic corruptions (Gaussian noise, pitch shift, temporal shift, and speed variation) in a clean-train/corrupted-test regime. Using AVFAD (voice pathology) and TESS (speech emotion), we compare three QNN models (Random, Basic, Strongly) to a simple CNN baseline (CNN-Base), ResNet-18 and VGG-16 using accuracy and corruption metrics (CE, mCE, RCE, RmCE), and analyze architectural factors (circuit complexity or depth, convergence) alongside per-emotion robustness. QNNs generally outperform the CNN-Base under pitch shift, temporal shift, and speed variation (up to 22% lower CE/RCE at severe temporal shift), while the CNN-Base remains more resilient to Gaussian noise. Among quantum circuits, QNN-Basic achieves the best overall robustness on AVFAD, and QNN-Random performs strongest on TESS. Emotion-wise, fear is most robust (80-90% accuracy under severe corruptions), neutral can collapse under strong Gaussian noise (5.5% accuracy), and happy is most vulnerable to pitch, temporal, and speed distortions. QNNs also converge up to six times faster than the CNN-Base. To our knowledge, this is a systematic study of QNN robustness for speech under common non-adversarial acoustic corruptions, indicating that shallow entangling quantum front-ends can improve noise resilience while sensitivity to additive noise remains a challenge.
Automatic Speech Recognition (ASR) in professional settings faces challenges that existing benchmarks underplay: dense domain terminology, formal register variation, and near-zero tolerance for critical entity errors. We present ProfASR-Bench, a professional-talk evaluation suite for high-stakes applications across finance, medicine, legal, and technology. Each example pairs a natural-language prompt (domain cue and/or speaker profile) with an entity-rich target utterance, enabling controlled measurement of context-conditioned recognition. The corpus supports conventional ASR metrics alongside entity-aware scores and slice-wise reporting by accent and gender. Using representative families Whisper (encoder-decoder ASR) and Qwen-Omni (audio language models) under matched no-context, profile, domain+profile, oracle, and adversarial conditions, we find a consistent pattern: lightweight textual context produces little to no change in average word error rate (WER), even with oracle prompts, and adversarial prompts do not reliably degrade performance. We term this the context-utilization gap (CUG): current systems are nominally promptable yet underuse readily available side information. ProfASR-Bench provides a standardized context ladder, entity- and slice-aware reporting with confidence intervals, and a reproducible testbed for comparing fusion strategies across model families. Dataset: https://huggingface.co/datasets/prdeepakbabu/ProfASR-Bench Code: https://github.com/prdeepakbabu/ProfASR-Bench




Large language model (LLM)-based automatic speech recognition (ASR) has recently achieved strong performance across diverse tasks, yet contextual biasing for named entities and hotwords under large vocabularies remains challenging. In this work, we propose a scalable two-stage framework that integrates hotword retrieval with LLM-ASR adaptation. First, we extend the Global-Local Contrastive Language-Audio pre-trained model (GLCLAP) to retrieve a compact top-k set of hotword candidates from a large vocabulary via robustness-aware data augmentation and fuzzy matching. Second, we inject the retrieved candidates as textual prompts into an LLM-ASR model and fine-tune it with Generative Rejection-Based Policy Optimization (GRPO), using a task-driven reward that jointly optimizes hotword recognition and overall transcription accuracy. Experiments on hotword-focused test sets show substantial keyword error rate (KER) reductions while maintaining sentence accuracy on general ASR benchmarks, demonstrating the effectiveness of the proposed framework for large-vocabulary contextual biasing.
Visual Speech Recognition aims to transcribe spoken words from silent lip-motion videos. This task is particularly challenging for Mandarin, as visemes are highly ambiguous and homophones are prevalent. We propose VALLR-Pin, a novel two-stage framework that extends the recent VALLR architecture from English to Mandarin. First, a shared video encoder feeds into dual decoders, which jointly predict both Chinese character sequences and their standard Pinyin romanization. The multi-task learning of character and phonetic outputs fosters robust visual-semantic representations. During inference, the text decoder generates multiple candidate transcripts. We construct a prompt by concatenating the Pinyin output with these candidate Chinese sequences and feed it to a large language model to resolve ambiguities and refine the transcription. This provides the LLM with explicit phonetic context to correct homophone-induced errors. Finally, we fine-tune the LLM on synthetic noisy examples: we generate imperfect Pinyin-text pairs from intermediate VALLR-Pin checkpoints using the training data, creating instruction-response pairs for error correction. This endows the LLM with awareness of our model's specific error patterns. In summary, VALLR-Pin synergizes visual features with phonetic and linguistic context to improve Mandarin lip-reading performance.




Conventional automatic speech recognition (ASR) models typically produce outputs as normalized texts lacking punctuation and capitalization, necessitating post-processing models to enhance readability. This approach, however, introduces additional complexity and latency due to the cascaded system design. In response to this challenge, there is a growing trend to develop end-to-end (E2E) ASR models capable of directly predicting punctuation and capitalization, though this area remains underexplored. In this paper, we propose an enhanced fully formatted E2E ASR model that leverages knowledge distillation (KD) through multi-codebook vector quantization (MVQ). Experimental results demonstrate that our model significantly outperforms previous works in word error rate (WER) both with and without punctuation and capitalization, and in punctuation error rate (PER). Evaluations on the LibriSpeech-PC test-clean and test-other subsets show that our model achieves state-of-the-art results.




In this paper, we present ElfCore, a 28nm digital spiking neural network processor tailored for event-driven sensory signal processing. ElfCore is the first to efficiently integrate: (1) a local online self-supervised learning engine that enables multi-layer temporal learning without labeled inputs; (2) a dynamic structured sparse training engine that supports high-accuracy sparse-to-sparse learning; and (3) an activity-dependent sparse weight update mechanism that selectively updates weights based solely on input activity and network dynamics. Demonstrated on tasks including gesture recognition, speech, and biomedical signal processing, ElfCore outperforms state-of-the-art solutions with up to 16X lower power consumption, 3.8X reduced on-chip memory requirements, and 5.9X greater network capacity efficiency.