What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Apr 24, 2025
Abstract:Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.
Via

Apr 25, 2025
Abstract:Recent advancements in image manipulation have achieved unprecedented progress in generating photorealistic content, but also simultaneously eliminating barriers to arbitrary manipulation and editing, raising concerns about multimedia authenticity and cybersecurity. However, existing Image Manipulation Detection and Localization (IMDL) methodologies predominantly focus on splicing or copy-move forgeries, lacking dedicated benchmarks for inpainting-based manipulations. To bridge this gap, we present COCOInpaint, a comprehensive benchmark specifically designed for inpainting detection, with three key contributions: 1) High-quality inpainting samples generated by six state-of-the-art inpainting models, 2) Diverse generation scenarios enabled by four mask generation strategies with optional text guidance, and 3) Large-scale coverage with 258,266 inpainted images with rich semantic diversity. Our benchmark is constructed to emphasize intrinsic inconsistencies between inpainted and authentic regions, rather than superficial semantic artifacts such as object shapes. We establish a rigorous evaluation protocol using three standard metrics to assess existing IMDL approaches. The dataset will be made publicly available to facilitate future research in this area.
* 10 pages, 3 figures
Via

Apr 22, 2025
Abstract:In this thesis we discuss architectural designs and training methods for a neural network to have the ability of dissecting an image into objects of interest without supervision. The main challenge in 2D unsupervised object segmentation is distinguishing between foreground objects of interest and background. FlowCapsules uses motion as a cue for the objects of interest in 2D scenarios. The last part of this thesis focuses on 3D applications where the goal is detecting and removal of the object of interest from the input images. In these tasks, we leverage the geometric consistency of scenes in 3D to detect the inconsistent dynamic objects. Our transient object masks are then used for designing robust optimization kernels to improve 3D modelling in a casual capture setup. One of our goals in this thesis is to show the merits of unsupervised object based approaches in computer vision. Furthermore, we suggest possible directions for defining objects of interest or foreground objects without requiring supervision. Our hope is to motivate and excite the community into further exploring explicit object representations in image understanding tasks.
* PhD Thesis
Via

Apr 21, 2025
Abstract:Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
* Published as a workshop paper at "Tackling Climate Change with
Machine Learning", ICLR 2025
Via

Apr 24, 2025
Abstract:Context: Previous research on software aging is limited with focus on dynamic runtime indicators like memory and performance, often neglecting evolutionary indicators like source code comments and narrowly examining legacy issues within the TD context. Objective: We introduce the concept of Aging Debt (AD), representing the increased maintenance efforts and costs needed to keep software updated. We study AD through Self-Admitted Aging Debt (SAAD) observed in source code comments left by software developers. Method: We employ a mixed-methods approach, combining qualitative and quantitative analyses to detect and measure AD in software. This includes framing SAAD patterns from the source code comments after analysing the source code context, then utilizing the SAAD patterns to detect SAAD comments. In the process, we develop a taxonomy for SAAD that reflects the temporal aging of software and its associated debt. Then we utilize the taxonomy to quantify the different types of AD prevalent in OSS repositories. Results: Our proposed taxonomy categorizes temporal software aging into Active and Dormant types. Our extensive analysis of over 9,000+ Open Source Software (OSS) repositories reveals that more than 21% repositories exhibit signs of SAAD as observed from our gold standard SAAD dataset. Notably, Dormant AD emerges as the predominant category, highlighting a critical but often overlooked aspect of software maintenance. Conclusion: As software volume grows annually, so do evolutionary aging and maintenance challenges; our proposed taxonomy can aid researchers in detailed software aging studies and help practitioners develop improved and proactive maintenance strategies.
* Draft
Via

Apr 21, 2025
Abstract:Aerial object detection using unmanned aerial vehicles (UAVs) faces critical challenges including sub-10px targets, dense occlusions, and stringent computational constraints. Existing detectors struggle to balance accuracy and efficiency due to rigid receptive fields and redundant architectures. To address these limitations, we propose Variable Receptive Field DETR (VRF-DETR), a transformer-based detector incorporating three key components: 1) Multi-Scale Context Fusion (MSCF) module that dynamically recalibrates features through adaptive spatial attention and gated multi-scale fusion, 2) Gated Convolution (GConv) layer enabling parameter-efficient local-context modeling via depthwise separable operations and dynamic gating, and 3) Gated Multi-scale Fusion (GMCF) Bottleneck that hierarchically disentangles occluded objects through cascaded global-local interactions. Experiments on VisDrone2019 demonstrate VRF-DETR achieves 51.4\% mAP\textsubscript{50} and 31.8\% mAP\textsubscript{50:95} with only 13.5M parameters. This work establishes a new efficiency-accuracy Pareto frontier for UAV-based detection tasks.
Via

Apr 24, 2025
Abstract:We present a computational model of the mechanisms that may determine infants' behavior in the "mobile paradigm". This paradigm has been used in developmental psychology to explore how infants learn the sensory effects of their actions. In this paradigm, a mobile (an articulated and movable object hanging above an infant's crib) is connected to one of the infant's limbs, prompting the infant to preferentially move that "connected" limb. This ability to detect a "sensorimotor contingency" is considered to be a foundational cognitive ability in development. To understand how infants learn sensorimotor contingencies, we built a model that attempts to replicate infant behavior. Our model incorporates a neural network, action-outcome prediction, exploration, motor noise, preferred activity level, and biologically-inspired motor control. We find that simulations with our model replicate the classic findings in the literature showing preferential movement of the connected limb. An interesting observation is that the model sometimes exhibits a burst of movement after the mobile is disconnected, casting light on a similar occasional finding in infants. In addition to these general findings, the simulations also replicate data from two recent more detailed studies using a connection with the mobile that was either gradual or all-or-none. A series of ablation studies further shows that the inclusion of mechanisms of action-outcome prediction, exploration, motor noise, and biologically-inspired motor control was essential for the model to correctly replicate infant behavior. This suggests that these components are also involved in infants' sensorimotor learning.
* 16 pages, 16 figures
Via

Apr 22, 2025
Abstract:Navigating unknown environments to find a target object is a significant challenge. While semantic information is crucial for navigation, relying solely on it for decision-making may not always be efficient, especially in environments with weak semantic cues. Additionally, many methods are susceptible to misdetections, especially in environments with visually similar objects. To address these limitations, we propose ApexNav, a zero-shot object navigation framework that is both more efficient and reliable. For efficiency, ApexNav adaptively utilizes semantic information by analyzing its distribution in the environment, guiding exploration through semantic reasoning when cues are strong, and switching to geometry-based exploration when they are weak. For reliability, we propose a target-centric semantic fusion method that preserves long-term memory of the target object and similar objects, reducing false detections and minimizing task failures. We evaluate ApexNav on the HM3Dv1, HM3Dv2, and MP3D datasets, where it outperforms state-of-the-art methods in both SR and SPL metrics. Comprehensive ablation studies further demonstrate the effectiveness of each module. Furthermore, real-world experiments validate the practicality of ApexNav in physical environments. Project page is available at https://robotics-star.com/ApexNav.
Via

Apr 23, 2025
Abstract:Robots are increasingly envisioned as human companions, assisting with everyday tasks that often involve manipulating deformable objects. Although recent advances in robotic hardware and embodied AI have expanded their capabilities, current systems still struggle with handling thin, flat, and deformable objects such as paper and fabric. This limitation arises from the lack of suitable perception techniques for robust state estimation under diverse object appearances, as well as the absence of planning techniques for generating appropriate grasp motions. To bridge these gaps, this paper introduces PP-Tac, a robotic system for picking up paper-like objects. PP-Tac features a multi-fingered robotic hand with high-resolution omnidirectional tactile sensors \sensorname. This hardware configuration enables real-time slip detection and online frictional force control that mitigates such slips. Furthermore, grasp motion generation is achieved through a trajectory synthesis pipeline, which first constructs a dataset of finger's pinching motions. Based on this dataset, a diffusion-based policy is trained to control the hand-arm robotic system. Experiments demonstrate that PP-Tac can effectively grasp paper-like objects of varying material, thickness, and stiffness, achieving an overall success rate of 87.5\%. To our knowledge, this work is the first attempt to grasp paper-like deformable objects using a tactile dexterous hand. Our project webpage can be found at: https://peilin-666.github.io/projects/PP-Tac/
* accepted by Robotics: Science and Systems(RSS) 2025
Via

Apr 23, 2025
Abstract:Perceptual hashing is used to detect whether an input image is similar to a reference image with a variety of security applications. Recently, they have been shown to succumb to adversarial input attacks which make small imperceptible changes to the input image yet the hashing algorithm does not detect its similarity to the original image. Property-preserving hashing (PPH) is a recent construct in cryptography, which preserves some property (predicate) of its inputs in the hash domain. Researchers have so far shown constructions of PPH for Hamming distance predicates, which, for instance, outputs 1 if two inputs are within Hamming distance $t$. A key feature of PPH is its strong correctness guarantee, i.e., the probability that the predicate will not be correctly evaluated in the hash domain is negligible. Motivated by the use case of detecting similar images under adversarial setting, we propose the first PPH construction for an $\ell_1$-distance predicate. Roughly, this predicate checks if the two one-sided $\ell_1$-distances between two images are within a threshold $t$. Since many adversarial attacks use $\ell_2$-distance (related to $\ell_1$-distance) as the objective function to perturb the input image, by appropriately choosing the threshold $t$, we can force the attacker to add considerable noise to evade detection, and hence significantly deteriorate the image quality. Our proposed scheme is highly efficient, and runs in time $O(t^2)$. For grayscale images of size $28 \times 28$, we can evaluate the predicate in $0.0784$ seconds when pixel values are perturbed by up to $1 \%$. For larger RGB images of size $224 \times 224$, by dividing the image into 1,000 blocks, we achieve times of $0.0128$ seconds per block for $1 \%$ change, and up to $0.2641$ seconds per block for $14\%$ change.
Via
