Abstract:In recent years, the development of interconnected devices has expanded in many fields, from infotainment to education and industrial applications. This trend has been accelerated by the increased number of sensors and accessibility to powerful hardware and software. One area that significantly benefits from these advancements is Teleoperated Driving (TD). In this scenario, a controller drives safely a vehicle from remote leveraging sensors data generated onboard the vehicle, and exchanged via Vehicle-to-Everything (V2X) communications. In this work, we tackle the problem of detecting the presence of cars and pedestrians from point cloud data to enable safe TD operations. More specifically, we exploit the SELMA dataset, a multimodal, open-source, synthetic dataset for autonomous driving, that we expanded by including the ground-truth bounding boxes of 3D objects to support object detection. We analyze the performance of state-of-the-art compression algorithms and object detectors under several metrics, including compression efficiency, (de)compression and inference time, and detection accuracy. Moreover, we measure the impact of compression and detection on the V2X network in terms of data rate and latency with respect to 3GPP requirements for TD applications.
Abstract:To ensure safety in teleoperated driving scenarios, communication between vehicles and remote drivers must satisfy strict latency and reliability requirements. In this context, Predictive Quality of Service (PQoS) was investigated as a tool to predict unanticipated degradation of the Quality of Service (QoS), and allow the network to react accordingly. In this work, we design a reinforcement learning (RL) agent to implement PQoS in vehicular networks. To do so, based on data gathered at the Radio Access Network (RAN) and/or the end vehicles, as well as QoS predictions, our framework is able to identify the optimal level of compression to send automotive data under low latency and reliability constraints. We consider different learning schemes, including centralized, fully-distributed, and federated learning. We demonstrate via ns-3 simulations that, while centralized learning generally outperforms any other solution, decentralized learning, and especially federated learning, offers a good trade-off between convergence time and reliability, with positive implications in terms of privacy and complexity.