Training deep learning models for corneal optical coherence tomography (OCT) imaging is limited by the availability of large, well-annotated datasets. We present a configurable Monte Carlo simulation framework that generates synthetic corneal B-scan optical OCT images with pixel-level five-layer segmentation labels derived directly from the simulation geometry. A five-layer corneal model with Gaussian surfaces captures curvature and thickness variability in healthy and keratoconic eyes. Each layer is assigned optical properties from the literature and light transport is simulated using Monte Carlo modeling of light transport in multi-layered tissues (MCML), while incorporating system features such as the confocal PSF and sensitivity roll-off. This approach produces over 10,000 high-resolution (1024x1024) image-label pairs and supports customization of geometry, photon count, noise, and system parameters. The resulting dataset enables systematic training, validation, and benchmarking of AI models under controlled, ground-truth conditions, providing a reproducible and scalable resource to support the development of diagnostic and surgical guidance applications in image-guided ophthalmology.
The rapid advancement of generative artificial intelligence has enabled models capable of producing complex textual and visual outputs; however, their decision-making processes remain largely opaque, limiting trust and accountability in high-stakes applications. This thesis introduces gSMILE, a unified framework for the explainability of generative models, extending the Statistical Model-agnostic Interpretability with Local Explanations (SMILE) method to generative settings. gSMILE employs controlled perturbations of textual input, Wasserstein distance metrics, and weighted surrogate modelling to quantify and visualise how specific components of a prompt or instruction influence model outputs. Applied to Large Language Models (LLMs), gSMILE provides fine-grained token-level attribution and generates intuitive heatmaps that highlight influential tokens and reasoning pathways. In instruction-based image editing models, the exact text-perturbation mechanism is employed, allowing for the analysis of how modifications to an editing instruction impact the resulting image. Combined with a scenario-based evaluation strategy grounded in the Operational Design Domain (ODD) framework, gSMILE allows systematic assessment of model behaviour across diverse semantic and environmental conditions. To evaluate explanation quality, we define rigorous attribution metrics, including stability, fidelity, accuracy, consistency, and faithfulness, and apply them across multiple generative architectures. Extensive experiments demonstrate that gSMILE produces robust, human-aligned attributions and generalises effectively across state-of-the-art generative models. These findings highlight the potential of gSMILE to advance transparent, reliable, and responsible deployment of generative AI technologies.
The reliable detection of unauthorized individuals in safety-critical industrial indoor spaces is crucial to avoid plant shutdowns, property damage, and personal hazards. Conventional vision-based methods that use deep-learning approaches for person recognition provide image information but are sensitive to lighting and visibility conditions and often violate privacy regulations, such as the General Data Protection Regulation (GDPR) in the European Union. Typically, detection systems based on deep learning require annotated data for training. Collecting and annotating such data, however, is highly time-consuming and due to manual treatments not necessarily error free. Therefore, this paper presents a privacy-compliant approach based on Micro-Electro-Mechanical Systems LiDAR (MEMS-LiDAR), which exclusively captures anonymized 3D point clouds and avoids personal identification features. To compensate for the large amount of time required to record real LiDAR data and for post-processing and annotation, real recordings are augmented with synthetically generated scenes from the CARLA simulation framework. The results demonstrate that the hybrid data improves the average precision by 44 percentage points compared to a model trained exclusively with real data while reducing the manual annotation effort by 50 %. Thus, the proposed approach provides a scalable, cost-efficient alternative to purely real-data-based methods and systematically shows how synthetic LiDAR data can combine high performance in person detection with GDPR compliance in an industrial environment.
The lack of large-scale, demographically diverse face images with precise Action Unit (AU) occurrence and intensity annotations has long been recognized as a fundamental bottleneck in developing generalizable AU recognition systems. In this paper, we propose MAUGen, a diffusion-based multi-modal framework that jointly generates a large collection of photorealistic facial expressions and anatomically consistent AU labels, including both occurrence and intensity, conditioned on a single descriptive text prompt. Our MAUGen involves two key modules: (1) a Multi-modal Representation Learning (MRL) module that captures the relationships among the paired textual description, facial identity, expression image, and AU activations within a unified latent space; and (2) a Diffusion-based Image label Generator (DIG) that decodes the joint representation into aligned facial image-label pairs across diverse identities. Under this framework, we introduce Multi-Identity Facial Action (MIFA), a large-scale multimodal synthetic dataset featuring comprehensive AU annotations and identity variations. Extensive experiments demonstrate that MAUGen outperforms existing methods in synthesizing photorealistic, demographically diverse facial images along with semantically aligned AU labels.
In this paper, we propose a 3D asset-referenced diffusion model for image generation, exploring how to integrate 3D assets into image diffusion models. Existing reference-based image generation methods leverage large-scale pretrained diffusion models and demonstrate strong capability in generating diverse images conditioned on a single reference image. However, these methods are limited to single-image references and cannot leverage 3D assets, constraining their practical versatility. To address this gap, we present a cross-domain diffusion model with dual-branch perception that leverages multi-view RGB images and point maps of 3D assets to jointly model their colors and canonical-space coordinates, achieving precise consistency between generated images and the 3D references. Our spatially aligned dual-branch generation architecture and domain-decoupled generation mechanism ensure the simultaneous generation of two spatially aligned but content-disentangled outputs, RGB images and point maps, linking 2D image attributes with 3D asset attributes. Experiments show that our approach effectively uses 3D assets as references to produce images consistent with the given assets, opening new possibilities for combining diffusion models with 3D content creation.
Conversational image generation requires a model to follow user instructions across multiple rounds of interaction, grounded in interleaved text and images that accumulate as chat history. While recent multimodal large language models (MLLMs) can generate and edit images, most existing multi-turn benchmarks and training recipes are effectively Markov: the next output depends primarily on the most recent image, enabling shortcut solutions that ignore long-range history. In this work we formalize and target the more challenging non-Markov setting, where a user may refer back to earlier states, undo changes, or reference entities introduced several rounds ago. We present (i) non-Markov multi-round data construction strategies, including rollback-style editing that forces retrieval of earlier visual states and name-based multi-round personalization that binds names to appearances across rounds; (ii) a history-conditioned training and inference framework with token-level caching to prevent multi-round identity drift; and (iii) enabling improvements for high-fidelity image reconstruction and editable personalization, including a reconstruction-based DiT detokenizer and a multi-stage fine-tuning curriculum. We demonstrate that explicitly training for non-Markov interactions yields substantial improvements in multi-round consistency and instruction compliance, while maintaining strong single-round editing and personalization.
As realistic AI-generated images threaten digital authenticity, we address the generalization failure of generative artifact-based detectors by exploiting the intrinsic properties of the camera imaging pipeline. Concretely, we investigate color correlations induced by the color filter array (CFA) and demosaicing, and propose a Demosaicing-guided Color Correlation Training (DCCT) framework for AI-generated image detection. By simulating the CFA sampling pattern, we decompose each color image into a single-channel input (as the condition) and the remaining two channels as the ground-truth targets (for prediction). A self-supervised U-Net is trained to model the conditional distribution of the missing channels from the given one, parameterized via a mixture of logistic functions. Our theoretical analysis reveals that DCCT targets a provable distributional difference in color-correlation features between photographic and AI-generated images. By leveraging these distinct features to construct a binary classifier, DCCT achieves state-of-the-art generalization and robustness, significantly outperforming prior methods across over 20 unseen generators.
VQ-based image generation typically follows a two-stage pipeline: a tokenizer encodes images into discrete tokens, and a generative model learns their dependencies for reconstruction. However, improved tokenization in the first stage does not necessarily enhance the second-stage generation, as existing methods fail to constrain token dependencies. This mismatch forces the generative model to learn from unordered distributions, leading to bias and weak coherence. To address this, we propose native visual tokenization, which enforces causal dependencies during tokenization. Building on this idea, we introduce NativeTok, a framework that achieves efficient reconstruction while embedding relational constraints within token sequences. NativeTok consists of: (1) a Meta Image Transformer (MIT) for latent image modeling, and (2) a Mixture of Causal Expert Transformer (MoCET), where each lightweight expert block generates a single token conditioned on prior tokens and latent features. We further design a Hierarchical Native Training strategy that updates only new expert blocks, ensuring training efficiency. Extensive experiments demonstrate the effectiveness of NativeTok.
Autoregressive models with continuous tokens form a promising paradigm for visual generation, especially for text-to-image (T2I) synthesis, but they suffer from high computational cost. We study how to design compute-efficient linear attention within this framework. Specifically, we conduct a systematic empirical analysis of scaling behavior with respect to parameter counts under different design choices, focusing on (1) normalization paradigms in linear attention (division-based vs. subtraction-based) and (2) depthwise convolution for locality augmentation. Our results show that although subtraction-based normalization is effective for image classification, division-based normalization scales better for linear generative transformers. In addition, incorporating convolution for locality modeling plays a crucial role in autoregressive generation, consistent with findings in diffusion models. We further extend gating mechanisms, commonly used in causal linear attention, to the bidirectional setting and propose a KV gate. By introducing data-independent learnable parameters to the key and value states, the KV gate assigns token-wise memory weights, enabling flexible memory management similar to forget gates in language models. Based on these findings, we present LINA, a simple and compute-efficient T2I model built entirely on linear attention, capable of generating high-fidelity 1024x1024 images from user instructions. LINA achieves competitive performance on both class-conditional and T2I benchmarks, obtaining 2.18 FID on ImageNet (about 1.4B parameters) and 0.74 on GenEval (about 1.5B parameters). A single linear attention module reduces FLOPs by about 61 percent compared to softmax attention. Code and models are available at: https://github.com/techmonsterwang/LINA.
3D human pose lifting from a single RGB image is a challenging task in 3D vision. Existing methods typically establish a direct joint-to-joint mapping from 2D to 3D poses based on 2D features. This formulation suffers from two fundamental limitations: inevitable error propagation from input predicted 2D pose to 3D predictions and inherent difficulties in handling self-occlusion cases. In this paper, we propose PandaPose, a 3D human pose lifting approach via propagating 2D pose prior to 3D anchor space as the unified intermediate representation. Specifically, our 3D anchor space comprises: (1) Joint-wise 3D anchors in the canonical coordinate system, providing accurate and robust priors to mitigate 2D pose estimation inaccuracies. (2) Depth-aware joint-wise feature lifting that hierarchically integrates depth information to resolve self-occlusion ambiguities. (3) The anchor-feature interaction decoder that incorporates 3D anchors with lifted features to generate unified anchor queries encapsulating joint-wise 3D anchor set, visual cues and geometric depth information. The anchor queries are further employed to facilitate anchor-to-joint ensemble prediction. Experiments on three well-established benchmarks (i.e., Human3.6M, MPI-INF-3DHP and 3DPW) demonstrate the superiority of our proposition. The substantial reduction in error by $14.7\%$ compared to SOTA methods on the challenging conditions of Human3.6M and qualitative comparisons further showcase the effectiveness and robustness of our approach.