Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Detecting objects in 3D space from monocular input is crucial for applications ranging from robotics to scene understanding. Despite advanced performance in the indoor and autonomous driving domains, existing monocular 3D detection models struggle with in-the-wild images due to the lack of 3D in-the-wild datasets and the challenges of 3D annotation. We introduce LabelAny3D, an \emph{analysis-by-synthesis} framework that reconstructs holistic 3D scenes from 2D images to efficiently produce high-quality 3D bounding box annotations. Built on this pipeline, we present COCO3D, a new benchmark for open-vocabulary monocular 3D detection, derived from the MS-COCO dataset and covering a wide range of object categories absent from existing 3D datasets. Experiments show that annotations generated by LabelAny3D improve monocular 3D detection performance across multiple benchmarks, outperforming prior auto-labeling approaches in quality. These results demonstrate the promise of foundation-model-driven annotation for scaling up 3D recognition in realistic, open-world settings.
In this paper, we propose a robust real time detection and tracking method for detecting ships in a coastal video sequences. Since coastal scenarios are unpredictable and scenes have dynamic properties it is essential to apply detection methods that are robust to these conditions. This paper presents modified ViBe for moving object detection which detects ships and backwash. In the modified ViBe the probability of losing ships is decreased in comparison with the original ViBe. It is robust to natural sea waves and variation of lights and is capable of quickly updating the background. Based on geometrical properties of ship and some concepts such as brightness distortion, a new method for backwash cancellation is proposed. Experimental results demonstrate that the proposed strategy and methods have outstanding performance in ship detection and tracking. These results also illustrate real time and precise performance of the proposed strategy.
While DETR-like architectures have demonstrated significant potential for monocular 3D object detection, they are often hindered by a critical limitation: the exclusion of 3D attributes from the bipartite matching process. This exclusion arises from the inherent ill-posed nature of 3D estimation from monocular image, which introduces instability during training. Consequently, high-quality 3D predictions can be erroneously suppressed by 2D-only matching criteria, leading to suboptimal results. To address this, we propose Mono3DV, a novel Transformer-based framework. Our approach introduces three key innovations. First, we develop a 3D-Aware Bipartite Matching strategy that directly incorporates 3D geometric information into the matching cost, resolving the misalignment caused by purely 2D criteria. Second, it is important to stabilize the Bipartite Matching to resolve the instability occurring when integrating 3D attributes. Therefore, we propose 3D-DeNoising scheme in the training phase. Finally, recognizing the gradient vanishing issue associated with conventional denoising techniques, we propose a novel Variational Query DeNoising mechanism to overcome this limitation, which significantly enhances model performance. Without leveraging any external data, our method achieves state-of-the-art results on the KITTI 3D object detection benchmark.
Roadside perception datasets are typically constructed via cooperative labeling between synchronized vehicle and roadside frame pairs. However, real deployment often requires annotation of roadside-only data due to hardware and privacy constraints. Even human experts struggle to produce accurate labels without vehicle-side data (image, LIDAR), which not only increases annotation difficulty and cost, but also reveals a fundamental learnability problem: many roadside-only scenes contain distant, blurred, or occluded objects whose 3D properties are ambiguous from a single view and can only be reliably annotated by cross-checking paired vehicle--roadside frames. We refer to such cases as inherently ambiguous samples. To reduce wasted annotation effort on inherently ambiguous samples while still obtaining high-performing models, we turn to active learning. This work focuses on active learning for roadside monocular 3D object detection and proposes a learnability-driven framework that selects scenes which are both informative and reliably labelable, suppressing inherently ambiguous samples while ensuring coverage. Experiments demonstrate that our method, LH3D, achieves 86.06%, 67.32%, and 78.67% of full-performance for vehicles, pedestrians, and cyclists respectively, using only 25% of the annotation budget on DAIR-V2X-I, significantly outperforming uncertainty-based baselines. This confirms that learnability, not uncertainty, matters for roadside 3D perception.
Infrared small target detection (IRSTD) faces significant challenges due to the low signal-to-noise ratio (SNR), small target size, and complex cluttered backgrounds. Although recent DETR-based detectors benefit from global context modeling, they exhibit notable performance degradation on IRSTD. We revisit this phenomenon and reveal that the target-relevant embeddings of IRST are inevitably overwhelmed by dominant background features due to the self-attention mechanism, leading to unreliable query initialization and inaccurate target localization. To address this issue, we propose SEF-DETR, a novel framework that refines query initialization for IRSTD. Specifically, SEF-DETR consists of three components: Frequency-guided Patch Screening (FPS), Dynamic Embedding Enhancement (DEE), and Reliability-Consistency-aware Fusion (RCF). The FPS module leverages the Fourier spectrum of local patches to construct a target-relevant density map, suppressing background-dominated features. DEE strengthens multi-scale representations in a target-aware manner, while RCF further refines object queries by enforcing spatial-frequency consistency and reliability. Extensive experiments on three public IRSTD datasets demonstrate that SEF-DETR achieves superior detection performance compared to state-of-the-art methods, delivering a robust and efficient solution for infrared small target detection task.
Label assignment is a critical component in training dense object detectors. State-of-the-art methods typically assign each training sample a positive and a negative weight, optimizing the assignment scheme during training. However, these strategies often assign an insufficient number of positive samples to small objects, leading to a scale imbalance during training. To address this limitation, we introduce RFAssigner, a novel assignment strategy designed to enhance the multi-scale learning capabilities of dense detectors. RFAssigner first establishes an initial set of positive samples using a point-based prior. It then leverages a Gaussian Receptive Field (GRF) distance to measure the similarity between the GRFs of unassigned candidate locations and the ground-truth objects. Based on this metric, RFAssigner adaptively selects supplementary positive samples from the unassigned pool, promoting a more balanced learning process across object scales. Comprehensive experiments on three datasets with distinct object scale distributions validate the effectiveness and generalizability of our method. Notably, a single FCOS-ResNet-50 detector equipped with RFAssigner achieves state-of-the-art performance across all object scales, consistently outperforming existing strategies without requiring auxiliary modules or heuristics.
This paper presents a comparative study of a custom convolutional neural network (CNN) architecture against widely used pretrained and transfer learning CNN models across five real-world image datasets. The datasets span binary classification, fine-grained multiclass recognition, and object detection scenarios. We analyze how architectural factors, such as network depth, residual connections, and feature extraction strategies, influence classification and localization performance. The results show that deeper CNN architectures provide substantial performance gains on fine-grained multiclass datasets, while lightweight pretrained and transfer learning models remain highly effective for simpler binary classification tasks. Additionally, we extend the proposed architecture to an object detection setting, demonstrating its adaptability in identifying unauthorized auto-rickshaws in real-world traffic scenes. Building upon a systematic analysis of custom CNN architectures alongside pretrained and transfer learning models, this study provides practical guidance for selecting suitable network designs based on task complexity and resource constraints.
Conceal dense prediction (CDP), especially RGB-D camouflage object detection and open-vocabulary camouflage object segmentation, plays a crucial role in advancing the understanding and reasoning of complex camouflage scenes. However, high-quality and large-scale camouflage datasets with dense annotation remain scarce due to expensive data collection and labeling costs. To address this challenge, we explore leveraging generative models to synthesize realistic camouflage image-dense data for training CDP models with fine-grained representations, prior knowledge, and auxiliary reasoning. Concretely, our contributions are threefold: (i) we introduce GenCAMO-DB, a large-scale camouflage dataset with multi-modal annotations, including depth maps, scene graphs, attribute descriptions, and text prompts; (ii) we present GenCAMO, an environment-aware and mask-free generative framework that produces high-fidelity camouflage image-dense annotations; (iii) extensive experiments across multiple modalities demonstrate that GenCAMO significantly improves dense prediction performance on complex camouflage scenes by providing high-quality synthetic data. The code and datasets will be released after paper acceptance.
Detecting high-order epistasis is a fundamental challenge in genetic association studies due to the combinatorial explosion of candidate locus combinations. Although multifactor dimensionality reduction (MDR) is a widely used method for evaluating epistasis, exhaustive MDR-based searches become computationally infeasible as the number of loci or the interaction order increases. In this paper, we define the epistasis detection problem as a black-box optimization problem and solve it with a factorization machine with quadratic optimization annealing (FMQA). We propose an efficient epistasis detection method based on FMQA, in which the classification error rate (CER) computed by MDR is used as a black-box objective function. Experimental evaluations were conducted using simulated case-control datasets with predefined high-order epistasis. The results demonstrate that the proposed method successfully identified ground-truth epistasis across various interaction orders and the numbers of genetic loci within a limited number of iterations. These results indicate that the proposed method is effective and computationally efficient for high-order epistasis detection.
Semantic change detection in remote sensing aims to identify land cover changes between bi-temporal image pairs. Progress in this area has been limited by the scarcity of annotated datasets, as pixel-level annotation is costly and time-consuming. To address this, recent methods leverage synthetic data or generate artificial change pairs, but out-of-domain generalization remains limited. In this work, we introduce a weak temporal supervision strategy that leverages additional temporal observations of existing single-temporal datasets, without requiring any new annotations. Specifically, we extend single-date remote sensing datasets with new observations acquired at different times and train a change detection model by assuming that real bi-temporal pairs mostly contain no change, while pairing images from different locations to generate change examples. To handle the inherent noise in these weak labels, we employ an object-aware change map generation and an iterative refinement process. We validate our approach on extended versions of the FLAIR and IAILD aerial datasets, achieving strong zero-shot and low-data regime performance across different benchmarks. Lastly, we showcase results over large areas in France, highlighting the scalability potential of our method.