Spoken content, such as online videos and podcasts, often spans multiple topics, which makes automatic topic segmentation essential for user navigation and downstream applications. However, current methods do not fully leverage acoustic features, leaving room for improvement. We propose a multi-modal approach that fine-tunes both a text encoder and a Siamese audio encoder, capturing acoustic cues around sentence boundaries. Experiments on a large-scale dataset of YouTube videos show substantial gains over text-only and multi-modal baselines. Our model also proves more resilient to ASR noise and outperforms a larger text-only baseline on three additional datasets in Portuguese, German, and English, underscoring the value of learned acoustic features for robust topic segmentation.
Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.
Polemic questions need more than one viewpoint to express a balanced answer. Large Language Models (LLMs) can provide a balanced answer, but also take a single aligned viewpoint or refuse to answer. In this paper, we study if such initial responses can be steered to a specific viewpoint in a simple and intuitive way: by only providing one-sided arguments supporting the viewpoint. Our systematic study has three dimensions: (i) which stance is induced in the LLM response, (ii) how the polemic question is formulated, (iii) how the arguments are shown. We construct a small dataset and remarkably find that opinion steering occurs across (i)-(iii) for diverse models, number of arguments, and topics. Switching to other arguments consistently decreases opinion steering.
Fast computation of a matrix product $W^\top X$ is a workhorse of modern LLMs. To make their deployment more efficient, a popular approach is that of using a low-precision approximation $\widehat W$ in place of true $W$ ("weight-only quantization''). Information theory demonstrates that an optimal algorithm for reducing precision of $W$ depends on the (second order) statistics of $X$ and requires a careful alignment of vector quantization codebook with PCA directions of $X$ (a process known as "waterfilling allocation''). Dependence of the codebook on statistics of $X$, however, is highly impractical. This paper proves that there exist a universal codebook that is simultaneously near-optimal for all possible statistics of $X$, in the sense of being at least as good as an $X$-adapted waterfilling codebook with rate reduced by 0.11 bit per dimension. Such universal codebook would be an ideal candidate for the low-precision storage format, a topic of active modern research, but alas the existence proof is non-constructive. Equivalently, our result shows existence of a net in $\mathbb{R}^n$ that is a nearly-optimal covering of a sphere simultaneously with respect to all Hilbert norms.
With the growing employment of learning algorithms in robotic applications, research on reinforcement learning for bipedal locomotion has become a central topic for humanoid robotics. While recently published contributions achieve high success rates in locomotion tasks, scarce attention has been devoted to the development of methods that enable to handle hardware faults that may occur during the locomotion process. However, in real-world settings, environmental disturbances or sudden occurrences of hardware faults might yield severe consequences. To address these issues, this paper presents TOLEBI (A faulT-tOlerant Learning framEwork for Bipedal locomotIon) that handles faults on the robot during operation. Specifically, joint locking, power loss and external disturbances are injected in simulation to learn fault-tolerant locomotion strategies. In addition to transferring the learned policy to the real robot via sim-to-real transfer, an online joint status module incorporated. This module enables to classify joint conditions by referring to the actual observations at runtime under real-world conditions. The validation experiments conducted both in real-world and simulation with the humanoid robot TOCABI highlight the applicability of the proposed approach. To our knowledge, this manuscript provides the first learning-based fault-tolerant framework for bipedal locomotion, thereby fostering the development of efficient learning methods in this field.
Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
Evaluating the quality of children's utterances in adult-child dialogue remains challenging due to insufficient context-sensitive metrics. Common proxies such as Mean Length of Utterance (MLU), lexical diversity (vocd-D), and readability indices (Flesch-Kincaid Grade Level, Gunning Fog Index) are dominated by length and ignore conversational context, missing aspects of response quality such as reasoning depth, topic maintenance, and discourse planning. We introduce an LLM-as-a-judge framework that first classifies the Previous Adult Utterance Type and then scores the child's response along two axes: Expansion (contextual elaboration and inferential depth) and Independence (the child's contribution to advancing the discourse). These axes reflect fundamental dimensions in child language development, where Expansion captures elaboration, clause combining, and causal and contrastive connectives. Independence captures initiative, topic control, decreasing reliance on adult scaffolding through growing self-regulation, and audience design. We establish developmental validity by showing age-related patterns and demonstrate predictive value by improving age estimation over common baselines. We further confirm semantic sensitivity by detecting differences tied to discourse relations. Our metrics align with human judgments, enabling large-scale evaluation. This shifts child utterance assessment from simply measuring length to evaluating how meaningfully the child's speech contributes to and advances the conversation within its context.
Measuring advances in retrieval requires test collections with relevance judgments that can faithfully distinguish systems. This paper presents NeuCLIRTech, an evaluation collection for cross-language retrieval over technical information. The collection consists of technical documents written natively in Chinese and those same documents machine translated into English. It includes 110 queries with relevance judgments. The collection supports two retrieval scenarios: monolingual retrieval in Chinese, and cross-language retrieval with English as the query language. NeuCLIRTech combines the TREC NeuCLIR track topics of 2023 and 2024. The 110 queries with 35,962 document judgments provide strong statistical discriminatory power when trying to distinguish retrieval approaches. A fusion baseline of strong neural retrieval systems is included so that developers of reranking algorithms are not reliant on BM25 as their first stage retriever. The dataset and artifacts are released on Huggingface Datasets
Segmentation based on language has been a popular topic in computer vision. While recent advances in multimodal large language models (MLLMs) have endowed segmentation systems with reasoning capabilities, these efforts remain confined by the frozen internal knowledge of MLLMs, which limits their potential for real-world scenarios that involve up-to-date information or domain-specific concepts. In this work, we propose \textbf{Seg-ReSearch}, a novel segmentation paradigm that overcomes the knowledge bottleneck of existing approaches. By enabling interleaved reasoning and external search, Seg-ReSearch empowers segmentation systems to handle dynamic, open-world queries that extend beyond the frozen knowledge of MLLMs. To effectively train this capability, we introduce a hierarchical reward design that harmonizes initial guidance with progressive incentives, mitigating the dilemma between sparse outcome signals and rigid step-wise supervision. For evaluation, we construct OK-VOS, a challenging benchmark that explicitly requires outside knowledge for video object segmentation. Experiments on OK-VOS and two existing reasoning segmentation benchmarks demonstrate that our Seg-ReSearch improves state-of-the-art approaches by a substantial margin. Code and data will be released at https://github.com/iSEE-Laboratory/Seg-ReSearch.
This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.