Tip-of-the-tongue (ToT) known-item retrieval involves re-finding an item for which the searcher does not reliably recall an identifier. ToT information requests (or queries) are verbose and tend to include several complex phenomena, making them especially difficult for existing information retrieval systems. The TREC 2025 ToT track focused on a single ad-hoc retrieval task. This year, we extended the track to general domain and incorporated different sets of test queries from diverse sources, namely from the MS-ToT dataset, manual topic development, and LLM-based synthetic query generation. This year, 9 groups (including the track coordinators) submitted 32 runs.
Existing research often treats parliamentary discourse as a homogeneous whole, overlooking topic-specific patterns. Parliamentary speeches address a wide range of topics, some of which evoke stronger emotions than others. While everyone has intuitive assumptions about what the most emotive topics in a parliament may be, there has been little research into the emotions typically linked to different topics. This paper strives to fill this gap by examining emotion expression among the topics of parliamentary speeches delivered in Eduskunta, the Finnish Parliament, between 2000 and 2020. An emotion analysis model is used to investigate emotion expression in topics, from both synchronic and diachronic perspectives. The results strengthen evidence of increasing positivity in parliamentary speech and provide further insights into topic-specific emotion expression within parliamentary debate.
This paper introduces a novel Deep Researcher architecture designed to generate detailed research reports on complex PhD level topics by addressing the inherent limitations of the Parallel Scaling paradigm. Our system utilizes two key innovations: Sequential Research Plan Refinement via Reflection and a Candidates Crossover algorithm. The sequential refinement process is demonstrated as an efficient method that allows the agent to maintain a centralized Global Research Context, enabling it to look back at current progress, reason about the research plan, and intelligently make changes at runtime. This dynamic adaptation contrasts with parallel approaches, which often suffer from siloed knowledge. The Candidates Crossover algorithm further enhances search efficiency by deploying multiple LLM candidates with varied parameters to explore a larger search space, with their findings synthesized to curate a comprehensive final research response. The process concludes with One Shot Report Generation, ensuring the final document is informed by a unified narrative and high fact density. Powered by the Gemini 2.5 Pro model, our Deep Researcher was evaluated on the DeepResearch Bench, a globally recognized benchmark of 100 doctoral level research tasks. Our architecture achieved an overall score of 46.21, demonstrating superior performance by surpassing leading deep research agents such as Claude Researcher, Nvidia AIQ Research Assistant, Perplexity Research, Kimi Researcher and Grok Deeper Search present on the DeepResearch Bench actively running leaderboard. This performance marginally exceeds our previous work, Static DRA, and reinforces the finding that sequential scaling consistently outperforms the parallel self consistency paradigm.
Online hate on social media ranges from overt slurs and threats (\emph{hard hate speech}) to \emph{soft hate speech}: discourse that appears reasonable on the surface but uses framing and value-based arguments to steer audiences toward blaming or excluding a target group. We hypothesize that current moderation systems, largely optimized for surface toxicity cues, are not robust to this reasoning-driven hostility, yet existing benchmarks do not measure this gap systematically. We introduce \textbf{\textsc{SoftHateBench}}, a generative benchmark that produces soft-hate variants while preserving the underlying hostile standpoint. To generate soft hate, we integrate the \emph{Argumentum Model of Topics} (AMT) and \emph{Relevance Theory} (RT) in a unified framework: AMT provides the backbone argument structure for rewriting an explicit hateful standpoint into a seemingly neutral discussion while preserving the stance, and RT guides generation to keep the AMT chain logically coherent. The benchmark spans \textbf{7} sociocultural domains and \textbf{28} target groups, comprising \textbf{4,745} soft-hate instances. Evaluations across encoder-based detectors, general-purpose LLMs, and safety models show a consistent drop from hard to soft tiers: systems that detect explicit hostility often fail when the same stance is conveyed through subtle, reasoning-based language. \textcolor{red}{\textbf{Disclaimer.} Contains offensive examples used solely for research.}
The numerical solution of differential equations using neural networks has become a central topic in scientific computing, with Physics-Informed Neural Networks (PINNs) emerging as a powerful paradigm for both forward and inverse problems. However, unlike classical numerical methods that offer established convergence guarantees, neural network-based approximations typically lack rigorous error bounds. Furthermore, the non-deterministic nature of their optimization makes it difficult to mathematically certify their accuracy. To address these challenges, we propose a "Learn and Verify" framework that provides computable, mathematically rigorous error bounds for the solutions of differential equations. By combining a novel Doubly Smoothed Maximum (DSM) loss for training with interval arithmetic for verification, we compute rigorous a posteriori error bounds as machine-verifiable proofs. Numerical experiments on nonlinear Ordinary Differential Equations (ODEs), including problems with time-varying coefficients and finite-time blow-up, demonstrate that the proposed framework successfully constructs rigorous enclosures of the true solutions, establishing a foundation for trustworthy scientific machine learning.
Reviewer assignment is increasingly critical yet challenging in the LLM era, where rapid topic shifts render many pre-2023 benchmarks outdated and where proxy signals poorly reflect true reviewer familiarity. We address this evaluation bottleneck by introducing LR-bench, a high-fidelity, up-to-date benchmark curated from 2024-2025 AI/NLP manuscripts with five-level self-assessed familiarity ratings collected via a large-scale email survey, yielding 1055 expert-annotated paper-reviewer-score annotations. We further propose RATE, a reviewer-centric ranking framework that distills each reviewer's recent publications into compact keyword-based profiles and fine-tunes an embedding model with weak preference supervision constructed from heuristic retrieval signals, enabling matching each manuscript against a reviewer profile directly. Across LR-bench and the CMU gold-standard dataset, our approach consistently achieves state-of-the-art performance, outperforming strong embedding baselines by a clear margin. We release LR-bench at https://huggingface.co/datasets/Gnociew/LR-bench, and a GitHub repository at https://github.com/Gnociew/RATE-Reviewer-Assign.
In the era of explosive growth in academic literature, the burden of literature review on scholars are increasing. Proactively recommending academic papers that align with scholars' literature needs in the research process has become one of the crucial pathways to enhance research efficiency and stimulate innovative thinking. Current academic paper recommendation systems primarily focus on broad and coarse-grained suggestions based on general topic or field similarities. While these systems effectively identify related literature, they fall short in addressing scholars' more specific and fine-grained needs, such as locating papers that utilize particular research methods, or tackle distinct research tasks within the same topic. To meet the diverse and specific literature needs of scholars in the research process, this paper proposes a novel academic paper recommendation method. This approach embeds multidimensional information by integrating new types of fine-grained knowledge entities, title and abstract of document, and citation data. Recommendations are then generated by calculating the similarity between combined paper vectors. The proposed recommendation method was evaluated using the STM-KG dataset, a knowledge graph that incorporates scientific concepts derived from papers across ten distinct domains. The experimental results indicate that our method outperforms baseline models, achieving an average precision of 27.3% among the top 50 recommendations. This represents an improvement of 6.7% over existing approaches.
Delay-Doppler multicarrier modulation (DDMC) techniques have been among the central topics of research for high-Doppler channels. However, a complete transition to DDMC-based waveforms is not yet practically feasible. This is because 5G NR based waveforms, orthogonal frequency division multiplexing (OFDM) and discrete Fourier transform-spread OFDM (DFT-s-OFDM), remain as the modulation schemes for the sixth-generation radio (6GR). Hence, in this paper, we demonstrate how we can still benefit from DD-domain processing in high-mobility scenarios using 5G NR sounding reference signals (SRSs). By considering a DFT-s-OFDM receiver, we transform each received OFDM symbol into the delay-Doppler (DD) domain, where the channel is then estimated. With this approach, we estimate the DD channel parameters, allowing us to predict the aged channel over OFDM symbols without pilots. To improve channel prediction, we propose a linear joint channel estimation and equalization technique, where we use the detected data in each OFDM symbol to sequentially update our channel estimates. Our simulation results show that the proposed technique significantly outperforms the conventional frequency-domain estimation technique in terms of bit error rate (BER) and normalized mean squared error (NMSE). Furthermore, we show that using only two slots with SRS for initial channel estimation, our method supports pilot-free detection for more than 25 subsequent OFDM symbols.
Aggregate analytics over conversational data are increasingly used for safety monitoring, governance, and product analysis in large language model systems. A common practice is to embed conversations, cluster them, and publish short textual summaries describing each cluster. While raw conversations may never be exposed, these derived summaries can still pose privacy risks if they contain personally identifying information (PII) or uniquely traceable strings copied from individual conversations. We introduce CanaryBench, a simple and reproducible stress test for privacy leakage in cluster-level conversation summaries. CanaryBench generates synthetic conversations with planted secret strings ("canaries") that simulate sensitive identifiers. Because canaries are known a priori, any appearance of these strings in published summaries constitutes a measurable leak. Using TF-IDF embeddings and k-means clustering on 3,000 synthetic conversations (24 topics) with a canary injection rate of 0.60, we evaluate an intentionally extractive example snippet summarizer that models quote-like reporting. In this configuration, we observe canary leakage in 50 of 52 canary-containing clusters (cluster-level leakage rate 0.961538), along with nonzero regex-based PII indicator counts. A minimal defense combining a minimum cluster-size publication threshold (k-min = 25) and regex-based redaction eliminates measured canary leakage and PII indicator hits in the reported run while maintaining a similar cluster-coherence proxy. We position this work as a societal impacts contribution centered on privacy risk measurement for published analytics artifacts rather than raw user data.
The rise of conspiracy theories has created far-reaching societal harm in the public discourse by eroding trust and fueling polarization. Beyond this public impact lies a deeply personal toll on the friends and families of conspiracy believers, a dimension often overlooked in large-scale computational research. This study fills this gap by systematically mapping radicalization journeys and quantifying the associated emotional toll inflicted on loved ones. We use the prominent case of QAnon as a case study, analyzing 12747 narratives from the r/QAnonCasualties support community through a novel mixed-methods approach. First, we use topic modeling (BERTopic) to map the radicalization trajectories, identifying key pre-existing conditions, triggers, and post-radicalization characteristics. From this, we apply an LDA-based graphical model to uncover six recurring archetypes of QAnon adherents, which we term "radicalization personas." Finally, using LLM-assisted emotion detection and regression modeling, we link these personas to the specific emotional toll reported by narrators. Our findings reveal that these personas are not just descriptive; they are powerful predictors of the specific emotional harms experienced by narrators. Radicalization perceived as a deliberate ideological choice is associated with narrator anger and disgust, while those marked by personal and cognitive collapse are linked to fear and sadness. This work provides the first empirical framework for understanding radicalization as a relational phenomenon, offering a vital roadmap for researchers and practitioners to navigate its interpersonal fallout.