Online topic models are unsupervised algorithms to identify latent topics in data streams that continuously evolve over time. Although these methods naturally align with real-world scenarios, they have received considerably less attention from the community compared to their offline counterparts, due to specific additional challenges. To tackle these issues, we present SB-SETM, an innovative model extending the Embedded Topic Model (ETM) to process data streams by merging models formed on successive partial document batches. To this end, SB-SETM (i) leverages a truncated stick-breaking construction for the topic-per-document distribution, enabling the model to automatically infer from the data the appropriate number of active topics at each timestep; and (ii) introduces a merging strategy for topic embeddings based on a continuous formulation of optimal transport adapted to the high dimensionality of the latent topic space. Numerical experiments show SB-SETM outperforming baselines on simulated scenarios. We extensively test it on a real-world corpus of news articles covering the Russian-Ukrainian war throughout 2022-2023.
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.
In large scale recommendation systems like the LinkedIn Feed, the retrieval stage is critical for narrowing hundreds of millions of potential candidates to a manageable subset for ranking. LinkedIn's Feed serves suggested content from outside of the member's network (based on the member's topical interests), where 2000 candidates are retrieved from a pool of hundreds of millions candidate with a latency budget of a few milliseconds and inbound QPS of several thousand per second. This paper presents a novel retrieval approach that fine-tunes a large causal language model (Meta's LLaMA 3) as a dual encoder to generate high quality embeddings for both users (members) and content (items), using only textual input. We describe the end to end pipeline, including prompt design for embedding generation, techniques for fine-tuning at LinkedIn's scale, and infrastructure for low latency, cost effective online serving. We share our findings on how quantizing numerical features in the prompt enables the information to get properly encoded in the embedding, facilitating greater alignment between the retrieval and ranking layer. The system was evaluated using offline metrics and an online A/B test, which showed substantial improvements in member engagement. We observed significant gains among newer members, who often lack strong network connections, indicating that high-quality suggested content aids retention. This work demonstrates how generative language models can be effectively adapted for real time, high throughput retrieval in industrial applications.
The polarization of opinions, information segregation, and cognitive biases on social media have attracted significant academic attention. In real-world networks, information often spans multiple interrelated topics, posing challenges for opinion evolution and highlighting the need for frameworks that simulate interactions among topics. Existing studies based on large language models (LLMs) focus largely on single topics, limiting the capture of cognitive transfer in multi-topic, cross-domain contexts. Traditional numerical models, meanwhile, simplify complex linguistic attitudes into discrete values, lacking interpretability, behavioral consistency, and the ability to integrate multiple topics. To address these issues, we propose Multi-topic Opinion Simulation (MTOS), a social simulation framework integrating multi-topic contexts with LLMs. MTOS leverages LLMs alongside short-term and long-term memory, incorporates multiple user-selection interaction mechanisms and dynamic topic-selection strategies, and employs a belief decay mechanism to enable perspective updates across topics. We conduct extensive experiments on MTOS, varying topic numbers, correlation types, and performing ablation studies to assess features such as group polarization and local consistency. Results show that multi-topic settings significantly alter polarization trends: positively correlated topics amplify echo chambers, negatively correlated topics inhibit them, and irrelevant topics also mitigate echo chamber effects through resource competition. Compared with numerical models, LLM-based agents realistically simulate dynamic opinion changes, reproduce linguistic features of news texts, and capture complex human reasoning, improving simulation interpretability and system stability.
Large language models have recently demonstrated advanced capabilities in solving IMO and Putnam problems; yet their role in research mathematics has remained fairly limited. The key difficulty is verification: suggested proofs may look plausible, but cannot be trusted without rigorous checking. We present a framework, called LLM+CAS, and an associated tool, O-Forge, that couples frontier LLMs with a computer algebra systems (CAS) in an In-Context Symbolic Feedback loop to produce proofs that are both creative and symbolically verified. Our focus is on asymptotic inequalities, a topic that often involves difficult proofs and appropriate decomposition of the domain into the "right" subdomains. Many mathematicians, including Terry Tao, have suggested that using AI tools to find the right decompositions can be very useful for research-level asymptotic analysis. In this paper, we show that our framework LLM+CAS turns out to be remarkably effective at proposing such decompositions via a combination of a frontier LLM and a CAS. More precisely, we use an LLM to suggest domain decomposition, and a CAS (such as Mathematica) that provides a verification of each piece axiomatically. Using this loop, we answer a question posed by Terence Tao: whether LLMs coupled with a verifier can be used to help prove intricate asymptotic inequalities. More broadly, we show how AI can move beyond contest math towards research-level tools for professional mathematicians.




Large language models (LLMs) have shown promising accuracy in predicting survey responses and policy preferences, which has increased interest in their potential to represent human interests in various domains. Most existing research has focused on behavioral cloning, effectively evaluating how well models reproduce individuals' expressed preferences. Drawing on theories of political representation, we highlight an underexplored design trade-off: whether AI systems should act as delegates, mirroring expressed preferences, or as trustees, exercising judgment about what best serves an individual's interests. This trade-off is closely related to issues of LLM sycophancy, where models can encourage behavior or validate beliefs that may be aligned with a user's short-term preferences, but is detrimental to their long-term interests. Through a series of experiments simulating votes on various policy issues in the U.S. context, we apply a temporal utility framework that weighs short and long-term interests (simulating a trustee role) and compare voting outcomes to behavior-cloning models (simulating a delegate). We find that trustee-style predictions weighted toward long-term interests produce policy decisions that align more closely with expert consensus on well-understood issues, but also show greater bias toward models' default stances on topics lacking clear agreement. These findings reveal a fundamental trade-off in designing AI systems to represent human interests. Delegate models better preserve user autonomy but may diverge from well-supported policy positions, while trustee models can promote welfare on well-understood issues yet risk paternalism and bias on subjective topics.
We present a transparent, reproducible measurement of research trends across 26,104 accepted papers from CVPR, ICLR, and NeurIPS spanning 2023-2025. Titles and abstracts are normalized, phrase-protected, and matched against a hand-crafted lexicon to assign up to 35 topical labels and mine fine-grained cues about tasks, architectures, training regimes, objectives, datasets, and co-mentioned modalities. The analysis quantifies three macro shifts: (1) a sharp rise of multimodal vision-language-LLM work, which increasingly reframes classic perception as instruction following and multi-step reasoning; (2) steady expansion of generative methods, with diffusion research consolidating around controllability, distillation, and speed; and (3) resilient 3D and video activity, with composition moving from NeRFs to Gaussian splatting and a growing emphasis on human- and agent-centric understanding. Within VLMs, parameter-efficient adaptation like prompting/adapters/LoRA and lightweight vision-language bridges dominate; training practice shifts from building encoders from scratch to instruction tuning and finetuning strong backbones; contrastive objectives recede relative to cross-entropy/ranking and distillation. Cross-venue comparisons show CVPR has a stronger 3D footprint and ICLR the highest VLM share, while reliability themes such as efficiency or robustness diffuse across areas. We release the lexicon and methodology to enable auditing and extension. Limitations include lexicon recall and abstract-only scope, but the longitudinal signals are consistent across venues and years.




Document expansion (DE) via query generation tackles vocabulary mismatch in sparse retrieval, yet faces limitations: uncontrolled generation producing hallucinated or redundant queries with low diversity; poor generalization from in-domain training (e.g., MS MARCO) to out-of-domain data like BEIR; and noise from concatenation harming dense retrieval. While Large Language Models (LLMs) enable cross-domain query generation, basic prompting lacks control, and taxonomy-based methods rely on domain-specific structures, limiting applicability. To address these challenges, we introduce Doc2Query++, a DE framework that structures query generation by first inferring a document's latent topics via unsupervised topic modeling for cross-domain applicability, then using hybrid keyword selection to create a diverse and relevant keyword set per document. This guides LLM not only to leverage keywords, which ensure comprehensive topic representation, but also to reduce redundancy through diverse, relevant terms. To prevent noise from query appending in dense retrieval, we propose Dual-Index Fusion strategy that isolates text and query signals, boosting performance in dense settings. Extensive experiments show Doc2Query++ significantly outperforms state-of-the-art baselines, achieving substantial gains in MAP, nDCG@10 and Recall@100 across diverse datasets on both sparse and dense retrieval.




Learning on temporal graphs has become a central topic in graph representation learning, with numerous benchmarks indicating the strong performance of state-of-the-art models. However, recent work has raised concerns about the reliability of benchmark results, noting issues with commonly used evaluation protocols and the surprising competitiveness of simple heuristics. This contrast raises the question of which properties of the underlying graphs temporal graph learning models actually use to form their predictions. We address this by systematically evaluating seven models on their ability to capture eight fundamental attributes related to the link structure of temporal graphs. These include structural characteristics such as density, temporal patterns such as recency, and edge formation mechanisms such as homophily. Using both synthetic and real-world datasets, we analyze how well models learn these attributes. Our findings reveal a mixed picture: models capture some attributes well but fail to reproduce others. With this, we expose important limitations. Overall, we believe that our results provide practical insights for the application of temporal graph learning models, and motivate more interpretability-driven evaluations in temporal graph learning research.




Understanding the encoding and decoding mechanisms of dynamic neural responses to different visual stimuli is an important topic in exploring how the brain represents visual information. Currently, hierarchically deep neural networks (DNNs) have played a significant role as tools for mining the core features of complex data. However, most methods often overlook the dynamic generation process of neural data, such as hierarchical brain's visual data, within the brain's structure. In the decoding of brain's visual data, two main paradigms are 'fine-grained decoding tests' and 'rough-grained decoding tests', which we define as focusing on a single brain region and studying the overall structure across multiple brain regions, respectively. In this paper, we mainly use the Visual Coding Neuropixel dataset from the Allen Brain Institute, and the hierarchical information extracted from some single brain regions (i.e., fine-grained decoding tests) is provided to the proposed method for studying the adaptive topological decoding between brain regions, called the Adaptive Topological Vision Transformer, or AT-ViT. In numerous experiments, the results reveal the importance of the proposed method in hierarchical networks in the visual tasks, and also validate the hypothesis that "the hierarchical information content in brain regions of the visual system can be quantified by decoding outcomes to reflect an information hierarchy." Among them, we found that neural data collected in the hippocampus can have a random decoding performance, and this negative impact on performance still holds significant scientific value.