Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Lightweight online detection of series arc faults is critically needed in residential and industrial power systems to prevent electrical fires. Existing diagnostic methods struggle to achieve both rapid response and robust accuracy under resource-constrained conditions. To overcome the challenge, this work suggests leveraging a multi-frequency neural network named MFNN, embedding prior physical knowledge into the network. Inspired by arcing current curve and the Fourier decomposition analysis, we create an adaptive activation function with super-expressiveness, termed EAS, and a novel network architecture with branch networks to help MFNN extract features with multiple frequencies. In our experiments, eight advanced arc fault diagnosis models across an experimental dataset with multiple sampling times and multi-level noise are used to demonstrate the superiority of MFNN. The corresponding experiments show: 1) The MFNN outperforms other models in arc fault location, befitting from signal decomposition of branch networks. 2) The noise immunity of MFNN is much better than that of other models, achieving 14.51% over LCNN and 16.3% over BLS in test accuracy when SNR=-9. 3) EAS and the network architecture contribute to the excellent performance of MFNN.
The rapid ascent of artificial intelligence (AI) is often portrayed as a revolution born from computer science and engineering. This narrative, however, obscures a fundamental truth: the theoretical and methodological core of AI is, and has always been, statistical. This paper systematically argues that the field of statistics provides the indispensable foundation for machine learning and modern AI. We deconstruct AI into nine foundational pillars-Inference, Density Estimation, Sequential Learning, Generalization, Representation Learning, Interpretability, Causality, Optimization, and Unification-demonstrating that each is built upon century-old statistical principles. From the inferential frameworks of hypothesis testing and estimation that underpin model evaluation, to the density estimation roots of clustering and generative AI; from the time-series analysis inspiring recurrent networks to the causal models that promise true understanding, we trace an unbroken statistical lineage. While celebrating the computational engines that power modern AI, we contend that statistics provides the brain-the theoretical frameworks, uncertainty quantification, and inferential goals-while computer science provides the brawn-the scalable algorithms and hardware. Recognizing this statistical backbone is not merely an academic exercise, but a necessary step for developing more robust, interpretable, and trustworthy intelligent systems. We issue a call to action for education, research, and practice to re-embrace this statistical foundation. Ignoring these roots risks building a fragile future; embracing them is the path to truly intelligent machines. There is no machine learning without statistical learning; no artificial intelligence without statistical thought.
Catastrophic forgetting (CF) poses a persistent challenge in continual learning (CL), especially within federated learning (FL) environments characterized by non-i.i.d. time series data. While existing research has largely focused on classification tasks in vision domains, the regression-based forecasting setting prevalent in IoT and edge applications remains underexplored. In this paper, we present the first benchmarking framework tailored to investigate CF in federated continual time series forecasting. Using the Beijing Multi-site Air Quality dataset across 12 decentralized clients, we systematically evaluate several CF mitigation strategies, including Replay, Elastic Weight Consolidation, Learning without Forgetting, and Synaptic Intelligence. Key contributions include: (i) introducing a new benchmark for CF in time series FL, (ii) conducting a comprehensive comparative analysis of state-of-the-art methods, and (iii) releasing a reproducible open-source framework. This work provides essential tools and insights for advancing continual learning in federated time-series forecasting systems.
Modal decomposition techniques, such as Empirical Mode Decomposition (EMD), Variational Mode Decomposition (VMD), and Singular Spectrum Analysis (SSA), have advanced time-frequency signal analysis since the early 21st century. These methods are generally classified into two categories: numerical optimization-based methods (EMD, VMD) and spectral decomposition methods (SSA) that consider the physical meaning of signals. The former can produce spurious modes due to the lack of physical constraints, while the latter is more sensitive to noise and struggles with nonlinear signals. Despite continuous improvements in these methods, a modal decomposition approach that effectively combines the strengths of both categories remains elusive. This paper thus proposes a Robust Modal Decomposition (RMD) method with constrained bandwidth, which preserves the intrinsic structure of the signal by mapping the time series into its trajectory-GRAM matrix in phase space. Moreover, the method incorporates bandwidth constraints during the decomposition process, enhancing noise resistance. Extensive experiments on synthetic and real-world datasets, including millimeter-wave radar echoes, electrocardiogram (ECG), phonocardiogram (PCG), and bearing fault detection data, demonstrate the method's effectiveness and versatility. All code and dataset samples are available on GitHub: https://github.com/Einstein-sworder/RMD.
Foundation models are large-scale machine learning models that are pre-trained on massive amounts of data and can be adapted for various downstream tasks. They have been extensively applied to tasks in Natural Language Processing and Computer Vision with models such as GPT, BERT, and CLIP. They are now also increasingly gaining attention in time-series analysis, particularly for physiological sensing. However, most time series foundation models are specialist models - with data in pre-training and testing of the same type, such as Electrocardiogram, Electroencephalogram, and Photoplethysmogram (PPG). Recent works, such as MOMENT, train a generalist time series foundation model with data from multiple domains, such as weather, traffic, and electricity. This paper aims to conduct a comprehensive benchmarking study to compare the performance of generalist and specialist models, with a focus on PPG signals. Through an extensive suite of total 51 tasks covering cardiac state assessment, laboratory value estimation, and cross-modal inference, we comprehensively evaluate both models across seven dimensions, including win score, average performance, feature quality, tuning gain, performance variance, transferability, and scalability. These metrics jointly capture not only the models' capability but also their adaptability, robustness, and efficiency under different fine-tuning strategies, providing a holistic understanding of their strengths and limitations for diverse downstream scenarios. In a full-tuning scenario, we demonstrate that the specialist model achieves a 27% higher win score. Finally, we provide further analysis on generalization, fairness, attention visualizations, and the importance of training data choice.
This study investigates whether Topological Data Analysis (TDA) can provide additional insights beyond traditional statistical methods in clustering currency behaviours. We focus on the foreign exchange (FX) market, which is a complex system often exhibiting non-linear and high-dimensional dynamics that classical techniques may not fully capture. We compare clustering results based on TDA-derived features versus classical statistical features using monthly logarithmic returns of 13 major currency exchange rates (all against the euro). Two widely-used clustering algorithms, \(k\)-means and Hierarchical clustering, are applied on both types of features, and cluster quality is evaluated via the Silhouette score and the Calinski-Harabasz index. Our findings show that TDA-based feature clustering produces more compact and well-separated clusters than clustering on traditional statistical features, particularly achieving substantially higher Calinski-Harabasz scores. However, all clustering approaches yield modest Silhouette scores, underscoring the inherent difficulty of grouping FX time series. The differing cluster compositions under TDA vs. classical features suggest that TDA captures structural patterns in currency co-movements that conventional methods might overlook. These results highlight TDA as a valuable complementary tool for analysing financial time series, with potential applications in risk management where understanding structural co-movements is crucial.
Transfer entropy measures directed information flow in time series, and it has become a fundamental quantity in applications spanning neuroscience, finance, and complex systems analysis. However, existing estimation methods suffer from the curse of dimensionality, require restrictive distributional assumptions, or need exponentially large datasets for reliable convergence. We address these limitations in the literature by proposing TENDE (Transfer Entropy Neural Diffusion Estimation), a novel approach that leverages score-based diffusion models to estimate transfer entropy through conditional mutual information. By learning score functions of the relevant conditional distributions, TENDE provides flexible, scalable estimation while making minimal assumptions about the underlying data-generating process. We demonstrate superior accuracy and robustness compared to existing neural estimators and other state-of-the-art approaches across synthetic benchmarks and real data.




Anomaly detection is a key task across domains such as industry, healthcare, and cybersecurity. Many real-world anomaly detection problems involve analyzing multiple features over time, making time series analysis a natural approach for such problems. While deep learning models have achieved strong performance in this field, their trend to exhibit high energy consumption limits their deployment in resource-constrained environments such as IoT devices, edge computing platforms, and wearables. To address this challenge, this paper introduces the \textit{Vacuum Spiker algorithm}, a novel Spiking Neural Network-based method for anomaly detection in time series. It incorporates a new detection criterion that relies on global changes in neural activity rather than reconstruction or prediction error. It is trained using Spike Time-Dependent Plasticity in a novel way, intended to induce changes in neural activity when anomalies occur. A new efficient encoding scheme is also proposed, which discretizes the input space into non-overlapping intervals, assigning each to a single neuron. This strategy encodes information with a single spike per time step, improving energy efficiency compared to conventional encoding methods. Experimental results on publicly available datasets show that the proposed algorithm achieves competitive performance while significantly reducing energy consumption, compared to a wide set of deep learning and machine learning baselines. Furthermore, its practical utility is validated in a real-world case study, where the model successfully identifies power curtailment events in a solar inverter. These results highlight its potential for sustainable and efficient anomaly detection.




Time series forecasting is central to decision-making in domains as diverse as energy, finance, climate, and public health. In practice, forecasters face thousands of short, noisy series that vary in frequency, quality, and horizon, where the dominant cost lies not in model fitting, but in the labor-intensive preprocessing, validation, and ensembling required to obtain reliable predictions. Prevailing statistical and deep learning models are tailored to specific datasets or domains and generalize poorly. A general, domain-agnostic framework that minimizes human intervention is urgently in demand. In this paper, we introduce TimeSeriesScientist (TSci), the first LLM-driven agentic framework for general time series forecasting. The framework comprises four specialized agents: Curator performs LLM-guided diagnostics augmented by external tools that reason over data statistics to choose targeted preprocessing; Planner narrows the hypothesis space of model choice by leveraging multi-modal diagnostics and self-planning over the input; Forecaster performs model fitting and validation and, based on the results, adaptively selects the best model configuration as well as ensemble strategy to make final predictions; and Reporter synthesizes the whole process into a comprehensive, transparent report. With transparent natural-language rationales and comprehensive reports, TSci transforms the forecasting workflow into a white-box system that is both interpretable and extensible across tasks. Empirical results on eight established benchmarks demonstrate that TSci consistently outperforms both statistical and LLM-based baselines, reducing forecast error by an average of 10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous report that makes the forecasting workflow more transparent and interpretable.




Reversible Instance Normalization (RevIN) is a key technique enabling simple linear models to achieve state-of-the-art performance in time series forecasting. While replacing its non-robust statistics with robust counterparts (termed R$^2$-IN) seems like a straightforward improvement, our findings reveal a far more complex reality. This paper deconstructs the perplexing performance of various normalization strategies by identifying four underlying theoretical contradictions. Our experiments provide two crucial findings: first, the standard RevIN catastrophically fails on datasets with extreme outliers, where its MSE surges by a staggering 683\%. Second, while the simple R$^2$-IN prevents this failure and unexpectedly emerges as the best overall performer, our adaptive model (A-IN), designed to test a diagnostics-driven heuristic, unexpectedly suffers a complete and systemic failure. This surprising outcome uncovers a critical, overlooked pitfall in time series analysis: the instability introduced by a simple or counter-intuitive heuristic can be more damaging than the statistical issues it aims to solve. The core contribution of this work is thus a new, cautionary paradigm for time series normalization: a shift from a blind search for complexity to a diagnostics-driven analysis that reveals not only the surprising power of simple baselines but also the perilous nature of naive adaptation.