Abstract:Transformers are increasingly adopted for modeling and forecasting time-series, yet their internal mechanisms remain poorly understood from a dynamical systems perspective. In contrast to classical autoregressive and state-space models, which benefit from well-established theoretical foundations, Transformer architectures are typically treated as black boxes. This gap becomes particularly relevant as attention-based models are considered for general-purpose or zero-shot forecasting across diverse dynamical regimes. In this work, we do not propose a new forecasting model, but instead investigate the representational capabilities and limitations of single-layer Transformers when applied to dynamical data. Building on a dynamical systems perspective we interpret causal self-attention as a linear, history-dependent recurrence and analyze how it processes temporal information. Through a series of linear and nonlinear case studies, we identify distinct operational regimes. For linear systems, we show that the convexity constraint imposed by softmax attention fundamentally restricts the class of dynamics that can be represented, leading to oversmoothing in oscillatory settings. For nonlinear systems under partial observability, attention instead acts as an adaptive delay-embedding mechanism, enabling effective state reconstruction when sufficient temporal context and latent dimensionality are available. These results help bridge empirical observations with classical dynamical systems theory, providing insight into when and why Transformers succeed or fail as models of dynamical systems.
Abstract:Modal identification is crucial for structural health monitoring and structural control, providing critical insights into structural dynamics and performance. This study presents a novel deep learning framework that integrates graph neural networks (GNNs), transformers, and a physics-informed loss function to achieve modal decomposition and identification across a population of structures. The transformer module decomposes multi-degrees-of-freedom (MDOF) structural dynamic measurements into single-degree-of-freedom (SDOF) modal responses, facilitating the identification of natural frequencies and damping ratios. Concurrently, the GNN captures the structural configurations and identifies mode shapes corresponding to the decomposed SDOF modal responses. The proposed model is trained in a purely physics-informed and unsupervised manner, leveraging modal decomposition theory and the independence of structural modes to guide learning without the need for labeled data. Validation through numerical simulations and laboratory experiments demonstrates its effectiveness in accurately decomposing dynamic responses and identifying modal properties from sparse structural dynamic measurements, regardless of variations in external loads or structural configurations. Comparative analyses against established modal identification techniques and model variations further underscore its superior performance, positioning it as a favorable approach for population-based structural health monitoring.




Abstract:We introduce a Graph Transformer framework that serves as a general inverse physics engine on meshes, demonstrated through the challenging task of reconstructing aerodynamic flow fields from sparse surface measurements. While deep learning has shown promising results in forward physics simulation, inverse problems remain particularly challenging due to their ill-posed nature and the difficulty of propagating information from limited boundary observations. Our approach addresses these challenges by combining the geometric expressiveness of message-passing neural networks with the global reasoning of Transformers, enabling efficient learning of inverse mappings from boundary conditions to complete states. We evaluate this framework on a comprehensive dataset of steady-state RANS simulations around diverse airfoil geometries, where the task is to reconstruct full pressure and velocity fields from surface pressure measurements alone. The architecture achieves high reconstruction accuracy while maintaining fast inference times. We conduct experiments and provide insights into the relative importance of local geometric processing and global attention mechanisms in mesh-based inverse problems. We also find that the framework is robust to reduced sensor coverage. These results suggest that Graph Transformers can serve as effective inverse physics engines across a broader range of applications where complete system states must be reconstructed from limited boundary observations.