Abstract:Cloud data pipelines increasingly operate under dynamic workloads, evolving schemas, cost constraints, and strict governance requirements. Despite advances in cloud-native orchestration frameworks, most production pipelines rely on static configurations and reactive operational practices, resulting in prolonged recovery times, inefficient resource utilization, and high manual overhead. This paper presents Agentic Cloud Data Engineering, a policy-aware control architecture that integrates bounded AI agents into the governance and control plane of cloud data pipelines. In Agentic Cloud Data Engineering platform, specialized agents analyze pipeline telemetry and metadata, reason over declarative cost and compliance policies, and propose constrained operational actions such as adaptive resource reconfiguration, schema reconciliation, and automated failure recovery. All agent actions are validated against governance policies to ensure predictable and auditable behavior. We evaluate Agentic Cloud Data Engineering platform using representative batch and streaming analytics workloads constructed from public enterprise-style datasets. Experimental results show that Agentic Cloud Data Engineering platform reduces mean pipeline recovery time by up to 45%, lowers operational cost by approximately 25%, and decreases manual intervention events by over 70% compared to static orchestration, while maintaining data freshness and policy compliance. These results demonstrate that policy-bounded agentic control provides an effective and practical approach for governing cloud data pipelines in enterprise environments.
Abstract:Phasor Measurement Units (PMUs) generate high-frequency, time-synchronized data essential for real-time power grid monitoring, yet the growing scale of PMU deployments creates significant challenges in latency, scalability, and reliability. Conventional centralized processing architectures are increasingly unable to handle the volume and velocity of PMU data, particularly in modern grids with dynamic operating conditions. This paper presents a scalable cloud-native architecture for intelligent PMU data processing that integrates artificial intelligence with edge and cloud computing. The proposed framework employs distributed stream processing, containerized microservices, and elastic resource orchestration to enable low-latency ingestion, real-time anomaly detection, and advanced analytics. Machine learning models for time-series analysis are incorporated to enhance grid observability and predictive capabilities. Analytical models are developed to evaluate system latency, throughput, and reliability, showing that the architecture can achieve sub-second response times while scaling to large PMU deployments. Security and privacy mechanisms are embedded to support deployment in critical infrastructure environments. The proposed approach provides a robust and flexible foundation for next-generation smart grid analytics.