Abstract:Accurate and interpretable forecasting of multivariate time series is crucial for understanding the complex dynamics of cryptocurrency markets in digital asset systems. Advanced deep learning methodologies, particularly Transformer-based and MLP-based architectures, have achieved competitive predictive performance in cryptocurrency forecasting tasks. However, cryptocurrency data is inherently composed of long-term socio-economic trends and local high-frequency speculative oscillations. Existing deep learning-based 'black-box' models fail to effectively decouple these composite dynamics or provide the interpretability needed for trustworthy financial decision-making. To overcome these limitations, we propose DecoKAN, an interpretable forecasting framework that integrates multi-level Discrete Wavelet Transform (DWT) for decoupling and hierarchical signal decomposition with Kolmogorov-Arnold Network (KAN) mixers for transparent and interpretable nonlinear modeling. The DWT component decomposes complex cryptocurrency time series into distinct frequency components, enabling frequency-specific analysis, while KAN mixers provide intrinsically interpretable spline-based mappings within each decomposed subseries. Furthermore, interpretability is enhanced through a symbolic analysis pipeline involving sparsification, pruning, and symbolization, which produces concise analytical expressions offering symbolic representations of the learned patterns. Extensive experiments demonstrate that DecoKAN achieves the lowest average Mean Squared Error on all tested real-world cryptocurrency datasets (BTC, ETH, XMR), consistently outperforming a comprehensive suite of competitive state-of-the-art baselines. These results validate DecoKAN's potential to bridge the gap between predictive accuracy and model transparency, advancing trustworthy decision support within complex cryptocurrency markets.
Abstract:Binaural speech enhancement faces a severe trade-off challenge, where state-of-the-art performance is achieved by computationally intensive architectures, while lightweight solutions often come at the cost of significant performance degradation. To bridge this gap, we propose the Global Adaptive Fourier Network (GAF-Net), a lightweight deep complex network that aims to establish a balance between performance and computational efficiency. The GAF-Net architecture consists of three components. First, a dual-feature encoder combining short-time Fourier transform and gammatone features enhances the robustness of acoustic representation. Second, a channel-independent globally adaptive Fourier modulator efficiently captures long-term temporal dependencies while preserving the spatial cues. Finally, a dynamic gating mechanism is implemented to reduce processing artifacts. Experimental results show that GAF-Net achieves competitive performance, particularly in terms of binaural cues (ILD and IPD error) and objective intelligibility (MBSTOI), with fewer parameters and computational cost. These results confirm that GAF-Net provides a feasible way to achieve high-fidelity binaural processing on resource-constrained devices.