In recent years, significant concern has emerged regarding the potential threat that Large Language Models (LLMs) pose to democratic societies through their persuasive capabilities. We expand upon existing research by conducting two survey experiments and a real-world simulation exercise to determine whether it is more cost effective to persuade a large number of voters using LLM chatbots compared to standard political campaign practice, taking into account both the "receive" and "accept" steps in the persuasion process (Zaller 1992). These experiments improve upon previous work by assessing extended interactions between humans and LLMs (instead of using single-shot interactions) and by assessing both short- and long-run persuasive effects (rather than simply asking users to rate the persuasiveness of LLM-produced content). In two survey experiments (N = 10,417) across three distinct political domains, we find that while LLMs are about as persuasive as actual campaign ads once voters are exposed to them, political persuasion in the real-world depends on both exposure to a persuasive message and its impact conditional on exposure. Through simulations based on real-world parameters, we estimate that LLM-based persuasion costs between \$48-\$74 per persuaded voter compared to \$100 for traditional campaign methods, when accounting for the costs of exposure. However, it is currently much easier to scale traditional campaign persuasion methods than LLM-based persuasion. While LLMs do not currently appear to have substantially greater potential for large-scale political persuasion than existing non-LLM methods, this may change as LLM capabilities continue to improve and it becomes easier to scalably encourage exposure to persuasive LLMs.
Measuring progress is fundamental to the advancement of any scientific field. As benchmarks play an increasingly central role, they also grow more susceptible to distortion. Chatbot Arena has emerged as the go-to leaderboard for ranking the most capable AI systems. Yet, in this work we identify systematic issues that have resulted in a distorted playing field. We find that undisclosed private testing practices benefit a handful of providers who are able to test multiple variants before public release and retract scores if desired. We establish that the ability of these providers to choose the best score leads to biased Arena scores due to selective disclosure of performance results. At an extreme, we identify 27 private LLM variants tested by Meta in the lead-up to the Llama-4 release. We also establish that proprietary closed models are sampled at higher rates (number of battles) and have fewer models removed from the arena than open-weight and open-source alternatives. Both these policies lead to large data access asymmetries over time. Providers like Google and OpenAI have received an estimated 19.2% and 20.4% of all data on the arena, respectively. In contrast, a combined 83 open-weight models have only received an estimated 29.7% of the total data. We show that access to Chatbot Arena data yields substantial benefits; even limited additional data can result in relative performance gains of up to 112% on the arena distribution, based on our conservative estimates. Together, these dynamics result in overfitting to Arena-specific dynamics rather than general model quality. The Arena builds on the substantial efforts of both the organizers and an open community that maintains this valuable evaluation platform. We offer actionable recommendations to reform the Chatbot Arena's evaluation framework and promote fairer, more transparent benchmarking for the field
Battles, or side-by-side comparisons in so called arenas that elicit human preferences, have emerged as a popular approach to assessing the output quality of LLMs. Recently, this idea has been extended to retrieval-augmented generation (RAG) systems. While undoubtedly representing an advance in evaluation, battles have at least two drawbacks, particularly in the context of complex information-seeking queries: they are neither explanatory nor diagnostic. Recently, the nugget evaluation methodology has emerged as a promising approach to evaluate the quality of RAG answers. Nuggets decompose long-form LLM-generated answers into atomic facts, highlighting important pieces of information necessary in a "good" response. In this work, we apply our AutoNuggetizer framework to analyze data from roughly 7K Search Arena battles provided by LMArena in a fully automatic manner. Our results show a significant correlation between nugget scores and human preferences, showcasing promise in our approach to explainable and diagnostic system evaluations.
This paper presents our process for developing a sample-efficient language model for a conversational Hinglish chatbot. Hinglish, a code-mixed language that combines Hindi and English, presents a unique computational challenge due to inconsistent spelling, lack of standardization, and limited quality of conversational data. This work evaluates multiple pre-trained cross-lingual language models, including Gemma3-4B and Qwen2.5-7B, and employs fine-tuning techniques to improve performance on Hinglish conversational tasks. The proposed approach integrates synthetically generated dialogues with insights from existing Hinglish datasets to address data scarcity. Experimental results demonstrate that models with fewer parameters, when appropriately fine-tuned on high-quality code-mixed data, can achieve competitive performance for Hinglish conversation generation while maintaining computational efficiency.
Recent advancements in LLMs enable chatbots to interact with individuals on a range of queries, including sensitive mental health contexts. Despite uncertainties about their effectiveness and reliability, the development of LLMs in these areas is growing, potentially leading to harms. To better identify and mitigate these harms, it is critical to understand how the values of people with lived experiences relate to the harms. In this study, we developed a technology probe, a GPT-4o based chatbot called Zenny, enabling participants to engage with depression self-management scenarios informed by previous research. We used Zenny to interview 17 individuals with lived experiences of depression. Our thematic analysis revealed key values: informational support, emotional support, personalization, privacy, and crisis management. This work explores the relationship between lived experience values, potential harms, and design recommendations for mental health AI chatbots, aiming to enhance self-management support while minimizing risks.
Scalable oversight, the process by which weaker AI systems supervise stronger ones, has been proposed as a key strategy to control future superintelligent systems. However, it is still unclear how scalable oversight itself scales. To address this gap, we propose a framework that quantifies the probability of successful oversight as a function of the capabilities of the overseer and the system being overseen. Specifically, our framework models oversight as a game between capability-mismatched players; the players have oversight-specific and deception-specific Elo scores that are a piecewise-linear function of their general intelligence, with two plateaus corresponding to task incompetence and task saturation. We validate our framework with a modified version of the game Nim and then apply it to four oversight games: "Mafia", "Debate", "Backdoor Code" and "Wargames". For each game, we find scaling laws that approximate how domain performance depends on general AI system capability (using Chatbot Arena Elo as a proxy for general capability). We then build on our findings in a theoretical study of Nested Scalable Oversight (NSO), a process in which trusted models oversee untrusted stronger models, which then become the trusted models in the next step. We identify conditions under which NSO succeeds and derive numerically (and in some cases analytically) the optimal number of oversight levels to maximize the probability of oversight success. In our numerical examples, the NSO success rate is below 52% when overseeing systems that are 400 Elo points stronger than the baseline overseer, and it declines further for overseeing even stronger systems.




The integration of Large Language Models (LLMs) into diverse applications, ranging from interactive chatbots and cloud AIOps to intelligent agents, has introduced a wide spectrum of Service Level Objectives (SLOs) for responsiveness. These workloads include latency-sensitive requests focused on per-token latency in streaming chat, throughput-intensive requests that require rapid full responses to invoke tools, and collective requests with dynamic dependencies arising from self-reflection or agent-based reasoning. This workload diversity, amplified by unpredictable request information such as response lengths and runtime dependencies, makes existing schedulers inadequate even within their design envelopes. In this paper, we define service gain as the useful service delivered by completing requests. We observe that as SLO directly reflects the actual performance needs of requests, completing a request much faster than its SLO (e.g., deadline) yields limited additional service gain. Based on this insight, we introduce Tempo, the first systematic SLO-aware scheduler designed to maximize service gain across diverse LLM workloads. Tempo allocates just enough serving bandwidth to meet each SLO, maximizing residual capacity for others best-effort workloads. Instead of assuming request information or none at all, it adopts a hybrid scheduling strategy: using quantile-based response upper bounds and dependency-graph matching for conservative initial estimates, prioritizing requests by service gain density, and refining decisions online as generation progresses. Our evaluation across diverse workloads, including chat, reasoning, and agentic pipelines, shows that Tempo improves end-to-end service gain by up to 8.3$\times$ and achieves up to 10.3$\times$ SLO goodput compared to state-of-the-art designs
Recently, Large Language Models (LLMs) have demonstrated remarkable advancements in Natural Language Processing (NLP). However, generating high-quality text that balances coherence, diversity, and relevance remains challenging. Traditional decoding methods, such as bean search and top-k sampling, often struggle with either repetitive or incoherent outputs, particularly in tasks that require long-form text generation. To address these limitations, the paper proposes a novel enhancement of the well-known Contrastive Search algorithm, Context-Enhanced Contrastive Search (CECS) with contextual calibration. The proposed scheme introduces several novelties including dynamic contextual importance weighting, multi-level Contrastive Search, and adaptive temperature control, to optimize the balance between fluency, creativity, and precision. The performance of CECS is evaluated using several standard metrics such as BLEU, ROUGE, and semantic similarity. Experimental results demonstrate significant improvements in both coherence and relevance of the generated texts by CECS outperforming the existing Contrastive Search techniques. The proposed algorithm has several potential applications in the real world including legal document drafting, customer service chatbots, and content marketing.
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks -- from offering writing support to delivering tailored recommendations or consultations. Over time, the interaction history between a user and an LLM can provide extensive information about an individual's traits and preferences. However, open questions remain on how well LLMs today can effectively leverage such history to (1) internalize the user's inherent traits and preferences, (2) track how the user profiling and preferences evolve over time, and (3) generate personalized responses accordingly in new scenarios. In this work, we introduce the PERSONAMEM benchmark. PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories, each containing up to 60 sessions of multi-turn conversations across 15 real-world tasks that require personalization. Given an in-situ user query, i.e. query issued by the user from the first-person perspective, we evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile. We observe that current LLMs still struggle to recognize the dynamic evolution in users' profiles over time through direct prompting approaches. As a consequence, LLMs often fail to deliver responses that align with users' current situations and preferences, with frontier models such as GPT-4.1, o4-mini, GPT-4.5, o1, or Gemini-2.0 achieving only around 50% overall accuracy, suggesting room for improvement. We hope that PERSONAMEM, along with the user profile and conversation simulation pipeline, can facilitate future research in the development of truly user-aware chatbots. Code and data are available at github.com/bowen-upenn/PersonaMem.
Suicide is a critical global public health issue, with millions experiencing suicidal ideation (SI) each year. Online spaces enable individuals to express SI and seek peer support. While prior research has revealed the potential of detecting SI using machine learning and natural language analysis, a key limitation is the lack of a theoretical framework to understand the underlying factors affecting high-risk suicidal intent. To bridge this gap, we adopted the Interpersonal Theory of Suicide (IPTS) as an analytic lens to analyze 59,607 posts from Reddit's r/SuicideWatch, categorizing them into SI dimensions (Loneliness, Lack of Reciprocal Love, Self Hate, and Liability) and risk factors (Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability of Suicide). We found that high-risk SI posts express planning and attempts, methods and tools, and weaknesses and pain. In addition, we also examined the language of supportive responses through psycholinguistic and content analyses to find that individuals respond differently to different stages of Suicidal Ideation (SI) posts. Finally, we explored the role of AI chatbots in providing effective supportive responses to suicidal ideation posts. We found that although AI improved structural coherence, expert evaluations highlight persistent shortcomings in providing dynamic, personalized, and deeply empathetic support. These findings underscore the need for careful reflection and deeper understanding in both the development and consideration of AI-driven interventions for effective mental health support.