Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Jun 11, 2025
Abstract:Often when we interact with a first-person account of events, we consider whether or not the narrator, the primary speaker of the text, is reliable. In this paper, we propose using computational methods to identify unreliable narrators, i.e. those who unintentionally misrepresent information. Borrowing literary theory from narratology to define different types of unreliable narrators based on a variety of textual phenomena, we present TUNa, a human-annotated dataset of narratives from multiple domains, including blog posts, subreddit posts, hotel reviews, and works of literature. We define classification tasks for intra-narrational, inter-narrational, and inter-textual unreliabilities and analyze the performance of popular open-weight and proprietary LLMs for each. We propose learning from literature to perform unreliable narrator classification on real-world text data. To this end, we experiment with few-shot, fine-tuning, and curriculum learning settings. Our results show that this task is very challenging, and there is potential for using LLMs to identify unreliable narrators. We release our expert-annotated dataset and code and invite future research in this area.
* ACL 2025
Via

Jun 12, 2025
Abstract:Learning medical visual representations from image-report pairs through joint learning has garnered increasing research attention due to its potential to alleviate the data scarcity problem in the medical domain. The primary challenges stem from the lengthy reports that feature complex discourse relations and semantic pathologies. Previous works have predominantly focused on instance-wise or token-wise cross-modal alignment, often neglecting the importance of pathological-level consistency. This paper presents a novel framework PLACE that promotes the Pathological-Level Alignment and enriches the fine-grained details via Correlation Exploration without additional human annotations. Specifically, we propose a novel pathological-level cross-modal alignment (PCMA) approach to maximize the consistency of pathology observations from both images and reports. To facilitate this, a Visual Pathology Observation Extractor is introduced to extract visual pathological observation representations from localized tokens. The PCMA module operates independently of any external disease annotations, enhancing the generalizability and robustness of our methods. Furthermore, we design a proxy task that enforces the model to identify correlations among image patches, thereby enriching the fine-grained details crucial for various downstream tasks. Experimental results demonstrate that our proposed framework achieves new state-of-the-art performance on multiple downstream tasks, including classification, image-to-text retrieval, semantic segmentation, object detection and report generation.
* 12 pages, 10 tables and 6 figures
Via

Jun 16, 2025
Abstract:Recycling steel scrap can reduce carbon dioxide (CO2) emissions from the steel industry. However, a significant challenge in steel scrap recycling is the inclusion of impurities other than steel. To address this issue, we propose vision-language-model-based anomaly detection where a model is finetuned in a supervised manner, enabling it to handle niche objects effectively. This model enables automated detection of anomalies at a fine-grained level within steel scrap. Specifically, we finetune the image encoder, equipped with multi-scale mechanism and text prompts aligned with both normal and anomaly images. The finetuning process trains these modules using a multiclass classification as the supervision.
Via

Jun 11, 2025
Abstract:A comprehensive understanding of traffic accidents is essential for improving city safety and informing policy decisions. In this study, we analyze traffic incidents in Munich to identify patterns and characteristics that distinguish different types of accidents. The dataset consists of both structured tabular features, such as location, time, and weather conditions, as well as unstructured free-text descriptions detailing the circumstances of each accident. Each incident is categorized into one of seven predefined classes. To assess the reliability of these labels, we apply NLP methods, including topic modeling and few-shot learning, which reveal inconsistencies in the labeling process. These findings highlight potential ambiguities in accident classification and motivate a refined predictive approach. Building on these insights, we develop a classification model that achieves high accuracy in assigning accidents to their respective categories. Our results demonstrate that textual descriptions contain the most informative features for classification, while the inclusion of tabular data provides only marginal improvements. These findings emphasize the critical role of free-text data in accident analysis and highlight the potential of transformer-based models in improving classification reliability.
* 18 pages, 4 tables, 4 figures. This paper will appear in the
ECML-PKDD 2025 Applied Data Science (ADS) track
Via

Jun 05, 2025
Abstract:A common approach to hallucination detection casts it as a natural language inference (NLI) task, often using LLMs to classify whether the generated text is entailed by corresponding reference texts. Since entailment classification is a complex reasoning task, one would expect that LLMs could benefit from generating an explicit reasoning process, as in CoT reasoning or the explicit ``thinking'' of recent reasoning models. In this work, we propose that guiding such models to perform a systematic and comprehensive reasoning process -- one that both decomposes the text into smaller facts and also finds evidence in the source for each fact -- allows models to execute much finer-grained and accurate entailment decisions, leading to increased performance. To that end, we define a 3-step reasoning process, consisting of (i) claim decomposition, (ii) sub-claim attribution and entailment classification, and (iii) aggregated classification, showing that such guided reasoning indeed yields improved hallucination detection. Following this reasoning framework, we introduce an analysis scheme, consisting of several metrics that measure the quality of the intermediate reasoning steps, which provided additional empirical evidence for the improved quality of our guided reasoning scheme.
Via

Jun 07, 2025
Abstract:Accurate and interpretable detection of depressive language in social media is useful for early interventions of mental health conditions, and has important implications for both clinical practice and broader public health efforts. In this paper, we investigate the performance of large language models (LLMs) and traditional machine learning classifiers across three classification tasks involving social media data: binary depression classification, depression severity classification, and differential diagnosis classification among depression, PTSD, and anxiety. Our study compares zero-shot LLMs with supervised classifiers trained on both conventional text embeddings and LLM-generated summary embeddings. Our experiments reveal that while zero-shot LLMs demonstrate strong generalization capabilities in binary classification, they struggle with fine-grained ordinal classifications. In contrast, classifiers trained on summary embeddings generated by LLMs demonstrate competitive, and in some cases superior, performance on the classification tasks, particularly when compared to models using traditional text embeddings. Our findings demonstrate the strengths of LLMs in mental health prediction, and suggest promising directions for better utilization of their zero-shot capabilities and context-aware summarization techniques.
* Submitted to the IEEE EMBS BHI 2025 Conference
Via

Jun 17, 2025
Abstract:Phishing attacks remain a significant threat to modern cybersecurity, as they successfully deceive both humans and the defense mechanisms intended to protect them. Traditional detection systems primarily focus on email metadata that users cannot see in their inboxes. Additionally, these systems struggle with phishing emails, which experienced users can often identify empirically by the text alone. This paper investigates the practical potential of Large Language Models (LLMs) to detect these emails by focusing on their intent. In addition to the binary classification of phishing emails, the paper introduces an intent-type taxonomy, which is operationalized by the LLMs to classify emails into distinct categories and, therefore, generate actionable threat information. To facilitate our work, we have curated publicly available datasets into a custom dataset containing a mix of legitimate and phishing emails. Our results demonstrate that existing LLMs are capable of detecting and categorizing phishing emails, underscoring their potential in this domain.
Via

Jun 23, 2025
Abstract:Matching job titles is a highly relevant task in the computational job market domain, as it improves e.g., automatic candidate matching, career path prediction, and job market analysis. Furthermore, aligning job titles to job skills can be considered an extension to this task, with similar relevance for the same downstream tasks. In this report, we outline NLPnorth's submission to TalentCLEF 2025, which includes both of these tasks: Multilingual Job Title Matching, and Job Title-Based Skill Prediction. For both tasks we compare (fine-tuned) classification-based, (fine-tuned) contrastive-based, and prompting methods. We observe that for Task A, our prompting approach performs best with an average of 0.492 mean average precision (MAP) on test data, averaged over English, Spanish, and German. For Task B, we obtain an MAP of 0.290 on test data with our fine-tuned classification-based approach. Additionally, we made use of extra data by pulling all the language-specific titles and corresponding \emph{descriptions} from ESCO for each job and skill. Overall, we find that the largest multilingual language models perform best for both tasks. Per the provisional results and only counting the unique teams, the ranking on Task A is 5$^{\text{th}}$/20 and for Task B 3$^{\text{rd}}$/14.
* TalentCLEF 2025
Via

Jun 23, 2025
Abstract:Ensuring the moral reasoning capabilities of Large Language Models (LLMs) is a growing concern as these systems are used in socially sensitive tasks. Nevertheless, current evaluation benchmarks present two major shortcomings: a lack of annotations that justify moral classifications, which limits transparency and interpretability; and a predominant focus on English, which constrains the assessment of moral reasoning across diverse cultural settings. In this paper, we introduce MFTCXplain, a multilingual benchmark dataset for evaluating the moral reasoning of LLMs via hate speech multi-hop explanation using Moral Foundation Theory (MFT). The dataset comprises 3,000 tweets across Portuguese, Italian, Persian, and English, annotated with binary hate speech labels, moral categories, and text span-level rationales. Empirical results highlight a misalignment between LLM outputs and human annotations in moral reasoning tasks. While LLMs perform well in hate speech detection (F1 up to 0.836), their ability to predict moral sentiments is notably weak (F1 < 0.35). Furthermore, rationale alignment remains limited mainly in underrepresented languages. These findings show the limited capacity of current LLMs to internalize and reflect human moral reasoning.
* Under Review
Via

Jun 17, 2025
Abstract:3D visual grounding (3DVG) is a critical task in scene understanding that aims to identify objects in 3D scenes based on text descriptions. However, existing methods rely on separately pre-trained vision and text encoders, resulting in a significant gap between the two modalities in terms of spatial geometry and semantic categories. This discrepancy often causes errors in object positioning and classification. The paper proposes UniSpace-3D, which innovatively introduces a unified representation space for 3DVG, effectively bridging the gap between visual and textual features. Specifically, UniSpace-3D incorporates three innovative designs: i) a unified representation encoder that leverages the pre-trained CLIP model to map visual and textual features into a unified representation space, effectively bridging the gap between the two modalities; ii) a multi-modal contrastive learning module that further reduces the modality gap; iii) a language-guided query selection module that utilizes the positional and semantic information to identify object candidate points aligned with textual descriptions. Extensive experiments demonstrate that UniSpace-3D outperforms baseline models by at least 2.24% on the ScanRefer and Nr3D/Sr3D datasets. The code will be made available upon acceptance of the paper.
Via
