Text classification is the process of categorizing text documents into predefined categories or labels.
With the rapid rise of social media and Internet culture, memes have become a popular medium for expressing emotional tendencies. This has sparked growing interest in Meme Emotion Understanding (MEU), which aims to classify the emotional intent behind memes by leveraging their multimodal contents. While existing efforts have achieved promising results, two major challenges remain: (1) a lack of fine-grained multimodal fusion strategies, and (2) insufficient mining of memes' implicit meanings and background knowledge. To address these challenges, we propose MemoDetector, a novel framework for advancing MEU. First, we introduce a four-step textual enhancement module that utilizes the rich knowledge and reasoning capabilities of Multimodal Large Language Models (MLLMs) to progressively infer and extract implicit and contextual insights from memes. These enhanced texts significantly enrich the original meme contents and provide valuable guidance for downstream classification. Next, we design a dual-stage modal fusion strategy: the first stage performs shallow fusion on raw meme image and text, while the second stage deeply integrates the enhanced visual and textual features. This hierarchical fusion enables the model to better capture nuanced cross-modal emotional cues. Experiments on two datasets, MET-MEME and MOOD, demonstrate that our method consistently outperforms state-of-the-art baselines. Specifically, MemoDetector improves F1 scores by 4.3\% on MET-MEME and 3.4\% on MOOD. Further ablation studies and in-depth analyses validate the effectiveness and robustness of our approach, highlighting its strong potential for advancing MEU. Our code is available at https://github.com/singing-cat/MemoDetector.
The generation of highly fluent text by Large Language Models (LLMs) poses a significant challenge to information integrity and academic research. In this paper, we introduce the Multi-Domain Detection of AI-Generated Text (M-DAIGT) shared task, which focuses on detecting AI-generated text across multiple domains, particularly in news articles and academic writing. M-DAIGT comprises two binary classification subtasks: News Article Detection (NAD) (Subtask 1) and Academic Writing Detection (AWD) (Subtask 2). To support this task, we developed and released a new large-scale benchmark dataset of 30,000 samples, balanced between human-written and AI-generated texts. The AI-generated content was produced using a variety of modern LLMs (e.g., GPT-4, Claude) and diverse prompting strategies. A total of 46 unique teams registered for the shared task, of which four teams submitted final results. All four teams participated in both Subtask 1 and Subtask 2. We describe the methods employed by these participating teams and briefly discuss future directions for M-DAIGT.




Contrastive pre-trained vision-language models, such as CLIP, demonstrate strong generalization abilities in zero-shot classification by leveraging embeddings extracted from image and text encoders. This paper aims to robustly fine-tune these vision-language models on in-distribution (ID) data without compromising their generalization abilities in out-of-distribution (OOD) and zero-shot settings. Current robust fine-tuning methods tackle this challenge by reusing contrastive learning, which was used in pre-training, for fine-tuning. However, we found that these methods distort the geometric structure of the embeddings, which plays a crucial role in the generalization of vision-language models, resulting in limited OOD and zero-shot performance. To address this, we propose Difference Vector Equalization (DiVE), which preserves the geometric structure during fine-tuning. The idea behind DiVE is to constrain difference vectors, each of which is obtained by subtracting the embeddings extracted from the pre-trained and fine-tuning models for the same data sample. By constraining the difference vectors to be equal across various data samples, we effectively preserve the geometric structure. Therefore, we introduce two losses: average vector loss (AVL) and pairwise vector loss (PVL). AVL preserves the geometric structure globally by constraining difference vectors to be equal to their weighted average. PVL preserves the geometric structure locally by ensuring a consistent multimodal alignment. Our experiments demonstrate that DiVE effectively preserves the geometric structure, achieving strong results across ID, OOD, and zero-shot metrics.




We find that current text embedding models produce outputs with a consistent bias, i.e., each embedding vector $e$ can be decomposed as $\tilde{e} + μ$, where $μ$ is almost identical across all sentences. We propose a plug-and-play, training-free and lightweight solution called Renormalization. Through extensive experiments, we show that renormalization consistently and statistically significantly improves the performance of existing models on the Massive Multilingual Text Embedding Benchmark (MMTEB). In particular, across 38 models, renormalization improves performance by 9.7 $σ$ on retrieval tasks, 3.1 $σ$ on classification tasks, and 0.8 $σ$ on other types of tasks. Renormalization has two variants: directly subtracting $μ$ from $e$, or subtracting the projection of $e$ onto $μ$. We theoretically predict that the latter performs better, and our experiments confirm this prediction.
Despite recent advancements in 3D-text cross-modal alignment, existing state-of-the-art methods still struggle to align fine-grained textual semantics with detailed geometric structures, and their alignment performance degrades significantly when scaling to large-scale 3D databases. To overcome this limitation, we introduce 3DAlign-DAER, a unified framework designed to align text and 3D geometry via the proposed dynamic attention policy and the efficient retrieval strategy, capturing subtle correspondences for diverse cross-modal retrieval and classification tasks. Specifically, during the training, our proposed dynamic attention policy (DAP) employs the Hierarchical Attention Fusion (HAF) module to represent the alignment as learnable fine-grained token-to-point attentions. To optimize these attentions across different tasks and geometric hierarchies, our DAP further exploits the Monte Carlo tree search to dynamically calibrate HAF attention weights via a hybrid reward signal and further enhances the alignment between textual descriptions and local 3D geometry. During the inference, our 3DAlign-DAER introduces an Efficient Retrieval Strategy (ERS) to leverage efficient hierarchical searching in the large-scale embedding spaces, outperforming traditional methods (e.g., KNN) in accuracy and efficiency. Furthermore, to facilitate text-3D alignment research and train our 3DAlign-DAER, we construct Align3D-2M, a large-scale dataset featuring 2M text-3D pairs, to provide sufficient fine-grained cross-modal annotations. Extensive and comprehensive experiments demonstrate the superior performance of our 3DAlign-DAER on diverse benchmarks. We will release our codes, models, and datasets.
This study explores the classification error of Mixture Discriminant Analysis (MDA) in scenarios where the number of mixture components exceeds those present in the actual data distribution, a condition known as overspecification. We use a two-component Gaussian mixture model within each class to fit data generated from a single Gaussian, analyzing both the algorithmic convergence of the Expectation-Maximization (EM) algorithm and the statistical classification error. We demonstrate that, with suitable initialization, the EM algorithm converges exponentially fast to the Bayes risk at the population level. Further, we extend our results to finite samples, showing that the classification error converges to Bayes risk with a rate $n^{-1/2}$ under mild conditions on the initial parameter estimates and sample size. This work provides a rigorous theoretical framework for understanding the performance of overspecified MDA, which is often used empirically in complex data settings, such as image and text classification. To validate our theory, we conduct experiments on remote sensing datasets.




Foundation models (FMs) promise to generalize medical imaging, but their effectiveness varies. It remains unclear how pre-training domain (medical vs. general), paradigm (e.g., text-guided), and architecture influence embedding quality, hindering the selection of optimal encoders for specific radiology tasks. To address this, we evaluate vision encoders from eight medical and general-domain FMs for chest X-ray analysis. We benchmark classification (pneumothorax, cardiomegaly) and segmentation (pneumothorax, cardiac boundary) using linear probing and fine-tuning. Our results show that domain-specific pre-training provides a significant advantage; medical FMs consistently outperformed general-domain models in linear probing, establishing superior initial feature quality. However, feature utility is highly task-dependent. Pre-trained embeddings were strong for global classification and segmenting salient anatomy (e.g., heart). In contrast, for segmenting complex, subtle pathologies (e.g., pneumothorax), all FMs performed poorly without significant fine-tuning, revealing a critical gap in localizing subtle disease. Subgroup analysis showed FMs use confounding shortcuts (e.g., chest tubes for pneumothorax) for classification, a strategy that fails for precise segmentation. We also found that expensive text-image alignment is not a prerequisite; image-only (RAD-DINO) and label-supervised (Ark+) FMs were among top performers. Notably, a supervised, end-to-end baseline remained highly competitive, matching or exceeding the best FMs on segmentation tasks. These findings show that while medical pre-training is beneficial, architectural choices (e.g., multi-scale) are critical, and pre-trained features are not universally effective, especially for complex localization tasks where supervised models remain a strong alternative.
Recent advances in diffusion models have achieved remarkable success in isolated computer vision tasks such as text-to-image generation, depth estimation, and optical flow. However, these models are often restricted by a ``single-task-single-model'' paradigm, severely limiting their generalizability and scalability in multi-task scenarios. Motivated by the cross-domain generalization ability of large language models, we propose a universal visual perception framework based on flow matching that can generate diverse visual representations across multiple tasks. Our approach formulates the process as a universal flow-matching problem from image patch tokens to task-specific representations rather than an independent generation or regression problem. By leveraging a strong self-supervised foundation model as the anchor and introducing a multi-scale, circular task embedding mechanism, our method learns a universal velocity field to bridge the gap between heterogeneous tasks, supporting efficient and flexible representation transfer. Extensive experiments on classification, detection, segmentation, depth estimation, and image-text retrieval demonstrate that our model achieves competitive performance in both zero-shot and fine-tuned settings, outperforming prior generalist and several specialist models. Ablation studies further validate the robustness, scalability, and generalization of our framework. Our work marks a significant step towards general-purpose visual perception, providing a solid foundation for future research in universal vision modeling.




Person re-identification (ReID) aims to retrieve target pedestrian images given either visual queries (image-to-image, I2I) or textual descriptions (text-to-image, T2I). Although both tasks share a common retrieval objective, they pose distinct challenges: I2I emphasizes discriminative identity learning, while T2I requires accurate cross-modal semantic alignment. Existing methods often treat these tasks separately, which may lead to representation entanglement and suboptimal performance. To address this, we propose a unified framework named Hierarchical Prompt Learning (HPL), which leverages task-aware prompt modeling to jointly optimize both tasks. Specifically, we first introduce a Task-Routed Transformer, which incorporates dual classification tokens into a shared visual encoder to route features for I2I and T2I branches respectively. On top of this, we develop a hierarchical prompt generation scheme that integrates identity-level learnable tokens with instance-level pseudo-text tokens. These pseudo-tokens are derived from image or text features via modality-specific inversion networks, injecting fine-grained, instance-specific semantics into the prompts. Furthermore, we propose a Cross-Modal Prompt Regularization strategy to enforce semantic alignment in the prompt token space, ensuring that pseudo-prompts preserve source-modality characteristics while enhancing cross-modal transferability. Extensive experiments on multiple ReID benchmarks validate the effectiveness of our method, achieving state-of-the-art performance on both I2I and T2I tasks.
Nigeria is the most populous country in Africa with a population of more than 200 million people. More than 500 languages are spoken in Nigeria and it is one of the most linguistically diverse countries in the world. Despite this, natural language processing (NLP) research has mostly focused on the following four languages: Hausa, Igbo, Nigerian-Pidgin, and Yoruba (i.e <1% of the languages spoken in Nigeria). This is in part due to the unavailability of textual data in these languages to train and apply NLP algorithms. In this work, we introduce ibom -- a dataset for machine translation and topic classification in four Coastal Nigerian languages from the Akwa Ibom State region: Anaang, Efik, Ibibio, and Oro. These languages are not represented in Google Translate or in major benchmarks such as Flores-200 or SIB-200. We focus on extending Flores-200 benchmark to these languages, and further align the translated texts with topic labels based on SIB-200 classification dataset. Our evaluation shows that current LLMs perform poorly on machine translation for these languages in both zero-and-few shot settings. However, we find the few-shot samples to steadily improve topic classification with more shots.