Information extraction is the process of automatically extracting structured information from unstructured text data.
Recent developments in natural language processing highlight text as an emerging data source for ecology. Textual resources carry unique information that can be used in complementarity with geospatial data sources, thus providing insights at the local scale into environmental conditions and properties hidden from more traditional data sources. Leveraging textual information in a spatial context presents several challenges. First, the contribution of textual data remains poorly defined in an ecological context, and it is unclear for which tasks it should be incorporated. Unlike ubiquitous satellite imagery or environmental covariates, the availability of textual data is sparse and irregular; its integration with geospatial data is not straightforward. In response to these challenges, this work proposes an attention-based approach that combines aerial imagery and geolocated text within a spatial neighbourhood, i.e. integrating contributions from several nearby observations. Our approach combines vision and text representations with a geolocation encoding, with an attention-based module that dynamically selects spatial neighbours that are useful for predictive tasks.The proposed approach is applied to the EcoWikiRS dataset, which combines high-resolution aerial imagery with sentences extracted from Wikipedia describing local environmental conditions across Switzerland. Our model is evaluated on the task of predicting 103 environmental variables from the SWECO25 data cube. Our approach consistently outperforms single-location or unimodal, i.e. image-only or text-only, baselines. When analysing variables by thematic groups, results show a significant improvement in performance for climatic, edaphic, population and land use/land cover variables, underscoring the benefit of including the spatial context when combining text and image data.
Current Retrieval-Augmented Generation (RAG) systems typically employ a traditional two-stage pipeline: an embedding model for initial retrieval followed by a reranker for refinement. However, this paradigm suffers from significant inefficiency due to the lack of shared information between stages, leading to substantial redundant computation. To address this limitation, we propose \textbf{State-Centric Retrieval}, a unified retrieval paradigm that utilizes "states" as a bridge to connect embedding models and rerankers. First, we perform state representation learning by fine-tuning an RWKV-based LLM, transforming it into \textbf{EmbeddingRWKV}, a unified model that serves as both an embedding model and a state backbone for extracting compact, reusable states. Building upon these reusable states, we further design a state-based reranker to fully leverage precomputed information. During reranking, the model processes only query tokens, decoupling inference cost from document length and yielding a 5.4$\times$--44.8$\times$ speedup. Furthermore, we observe that retaining all intermediate layer states is unnecessary; with a uniform layer selection strategy, our model maintains 98.62\% of full-model performance using only 25\% of the layers. Extensive experiments demonstrate that State-Centric Retrieval achieves high-quality retrieval and reranking results while significantly enhancing overall system efficiency. Code is available at \href{https://github.com/howard-hou/EmbeddingRWKV}{our GitHub repository}.
Vision Language Models (VLMs) are increasingly integrated into privacy-critical domains, yet existing evaluations of personally identifiable information (PII) leakage largely treat privacy as a static extraction task and ignore how a subject's online presence--the volume of their data available online--influences privacy alignment. We introduce PII-VisBench, a novel benchmark containing 4000 unique probes designed to evaluate VLM safety through the continuum of online presence. The benchmark stratifies 200 subjects into four visibility categories: high, medium, low, and zero--based on the extent and nature of their information available online. We evaluate 18 open-source VLMs (0.3B-32B) based on two key metrics: percentage of PII probing queries refused (Refusal Rate) and the fraction of non-refusal responses flagged for containing PII (Conditional PII Disclosure Rate). Across models, we observe a consistent pattern: refusals increase and PII disclosures decrease (9.10% high to 5.34% low) as subject visibility drops. We identify that models are more likely to disclose PII for high-visibility subjects, alongside substantial model-family heterogeneity and PII-type disparities. Finally, paraphrasing and jailbreak-style prompts expose attack and model-dependent failures, motivating visibility-aware safety evaluation and training interventions.
This study proposes a non-contact method for identifying individuals through the use of heartbeat features measured with millimeter-wave radar. Although complex-valued radar signal spectrograms are commonly used for this task, little attention has been paid to the choice of signal components, namely, whether to use amplitude, phase, or the complex signal itself. Although spectrograms can be constructed independently from amplitude or phase information, their respective contributions to identification accuracy remain unclear. To address this issue, we first evaluate identification performance using spectrograms derived separately from amplitude, phase, and complex signals. We then propose a feature fusion method that integrates these three representations to enhance identification accuracy. Experiments conducted with a 79-GHz radar system and involving six participants achieved an identification accuracy of 97.67%, demonstrating the effectiveness of the proposed component-wise analysis and integration approach.
Automated Audio Captioning aims to describe the semantic content of input audio. Recent works have employed large language models (LLMs) as a text decoder to leverage their reasoning capabilities. However, prior approaches that project audio features into the LLM embedding space without considering cross-modal alignment fail to fully utilize these capabilities. To address this, we propose LAMB, an LLM-based audio captioning framework that bridges the modality gap between audio embeddings and the LLM text embedding space. LAMB incorporates a Cross-Modal Aligner that minimizes Cauchy-Schwarz divergence while maximizing mutual information, yielding tighter alignment between audio and text at both global and token levels. We further design a Two-Stream Adapter that extracts semantically enriched audio embeddings, thereby delivering richer information to the Cross-Modal Aligner. Finally, leveraging the aligned audio embeddings, a proposed Token Guide directly computes scores within the LLM text embedding space to steer the output logits of generated captions. Experimental results confirm that our framework strengthens the reasoning capabilities of the LLM decoder, achieving state-of-the-art performance on AudioCaps.
The integration of Large Language Models (LLMs) into biomedical research offers new opportunities for domainspecific reasoning and knowledge representation. However, their performance depends heavily on the semantic quality of training data. In oncology, where precision and interpretability are vital, scalable methods for constructing structured knowledge bases are essential for effective fine-tuning. This study presents a pipeline for developing a lung cancer knowledge base using Open Information Extraction (OpenIE). The process includes: (1) identifying medical concepts with the MeSH thesaurus; (2) filtering open-access PubMed literature with permissive licenses (CC0); (3) extracting (subject, relation, object) triplets using OpenIE method; and (4) enriching triplet sets with Named Entity Recognition (NER) to ensure biomedical relevance. The resulting triplet sets provide a domain-specific, large-scale, and noise-aware resource for fine-tuning LLMs. We evaluated T5 models finetuned on this dataset through Supervised Semantic Fine-Tuning. Comparative assessments with ROUGE and BERTScore show significantly improved performance and semantic coherence, demonstrating the potential of OpenIE-derived resources as scalable, low-cost solutions for enhancing biomedical NLP.
Algorithm extraction aims to synthesize executable programs directly from models trained on specific algorithmic tasks, enabling de novo algorithm discovery without relying on human-written code. However, extending this paradigm to Transformer is hindered by superposition, where entangled features encoded in overlapping directions obstruct the extraction of symbolic expressions. In this work, we propose the Discrete Transformer, an architecture explicitly engineered to bridge the gap between continuous representations and discrete symbolic logic. By enforcing a strict functional disentanglement, which constrains Numerical Attention to information routing and Numerical MLP to element-wise arithmetic, and employing temperature-annealed sampling, our method effectively facilitates the extraction of human-readable programs. Empirically, the Discrete Transformer not only achieves performance comparable to RNN-based baselines but crucially extends interpretability to continuous variable domains. Moreover, our analysis of the annealing process shows that the efficient discrete search undergoes a clear phase transition from exploration to exploitation. We further demonstrate that our method enables fine-grained control over synthesized programs by imposing inductive biases. Collectively, these findings establish the Discrete Transformer as a robust framework for demonstration-free algorithm discovery, offering a rigorous pathway toward Transformer interpretability.
Understanding how large language models (LLMs) represent natural language is a central challenge in natural language processing (NLP) research. Many existing methods extract word embeddings from an LLM, visualise the embedding space via point-plots, and compare the relative positions of certain words. However, this approach only considers single words and not whole natural language expressions, thus disregards the context in which a word is used. Here we present a novel tool for analysing and visualising information flow in natural language expressions by applying diffusion tensor imaging (DTI) to word embeddings. We find that DTI reveals how information flows between word embeddings. Tracking information flows within the layers of an LLM allows for comparing different model structures and revealing opportunities for pruning an LLM's under-utilised layers. Furthermore, our model reveals differences in information flows for tasks like pronoun resolution and metaphor detection. Our results show that our model permits novel insights into how LLMs represent actual natural language expressions, extending the comparison of isolated word embeddings and improving the interpretability of NLP models.
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
Large Multimodal Models (LMMs) for video-audio understanding have traditionally been evaluated only on shorter videos of a few minutes long. In this paper, we introduce QMAVIS (Q Team-Multimodal Audio Video Intelligent Sensemaking), a novel long video-audio understanding pipeline built through a late fusion of LMMs, Large Language Models, and speech recognition models. QMAVIS addresses the gap in long-form video analytics, particularly for longer videos of a few minutes to beyond an hour long, opening up new potential applications in sensemaking, video content analysis, embodied AI, etc. Quantitative experiments using QMAVIS demonstrated a 38.75% improvement over state-of-the-art video-audio LMMs like VideoLlaMA2 and InternVL2 on the VideoMME (with subtitles) dataset, which comprises long videos with audio information. Evaluations on other challenging video understanding datasets like PerceptionTest and EgoSchema saw up to 2% improvement, indicating competitive performance. Qualitative experiments also showed that QMAVIS is able to extract the nuances of different scenes in a long video audio content while understanding the overarching narrative. Ablation studies were also conducted to ascertain the impact of each component in the fusion pipeline.