Information extraction is the process of automatically extracting structured information from unstructured text data.
In the Fourier domain, luminance information is primarily encoded in the amplitude spectrum, while spatial structures are captured in the phase components. The traditional Fourier Frequency information fitting employs pixel-wise loss functions, which tend to focus excessively on local information and may lead to global information loss. In this paper, we present LLFDisc, a U-shaped deep enhancement network that integrates cross-attention and gating mechanisms tailored for frequency-aware enhancement. We propose a novel distribution-aware loss that directly fits the Fourier-domain information and minimizes their divergence using a closed-form KL-Divergence objective. This enables the model to align Fourier-domain information more robustly than with conventional MSE-based losses. Furthermore, we enhance the perceptual loss based on VGG by embedding KL-Divergence on extracted deep features, enabling better structural fidelity. Extensive experiments across multiple benchmarks demonstrate that LLFDisc achieves state-of-the-art performance in both qualitative and quantitative evaluations. Our code will be released at: https://github.com/YanXY000/LLFDisc
Training deep neural networks has become increasingly demanding, requiring large datasets and significant computational resources, especially as model complexity advances. Data distillation methods, which aim to improve data efficiency, have emerged as promising solutions to this challenge. In the field of single image super-resolution (SISR), the reliance on large training datasets highlights the importance of these techniques. Recently, a generative adversarial network (GAN) inversion-based data distillation framework for SR was proposed, showing potential for better data utilization. However, the current method depends heavily on pre-trained SR networks and class-specific information, limiting its generalizability and applicability. To address these issues, we introduce a new data distillation approach for image SR that does not need class labels or pre-trained SR models. In particular, we first extract high-gradient patches and categorize images based on CLIP features, then fine-tune a diffusion model on the selected patches to learn their distribution and synthesize distilled training images. Experimental results show that our method achieves state-of-the-art performance while using significantly less training data and requiring less computational time. Specifically, when we train a baseline Transformer model for SR with only 0.68\% of the original dataset, the performance drop is just 0.3 dB. In this case, diffusion model fine-tuning takes 4 hours, and SR model training completes within 1 hour, much shorter than the 11-hour training time with the full dataset.
The linking of clinical entities is a crucial part of extracting structured information from clinical texts. It is the process of assigning a code from a medical ontology or classification to a phrase in the text. The International Classification of Diseases - 10th revision (ICD-10) is an international standard for classifying diseases for statistical and insurance purposes. Automatically assigning the correct ICD-10 code to terms in discharge summaries will simplify the work of healthcare professionals and ensure consistent coding in hospitals. Our paper proposes an approach for linking clinical terms to ICD-10 codes in different languages using Large Language Models (LLMs). The approach consists of a multistage pipeline that uses clinical dictionaries to match unambiguous terms in the text and then applies in-context learning with GPT-4.1 to predict the ICD-10 code for the terms that do not match the dictionary. Our system shows promising results in predicting ICD-10 codes on different benchmark datasets in Spanish - 0.89 F1 for categories and 0.78 F1 on subcategories on CodiEsp, and Greek - 0.85 F1 on ElCardioCC.
Humans can recognize the same actions despite large context and viewpoint variations, such as differences between species (walking in spiders vs. horses), viewpoints (egocentric vs. third-person), and contexts (real life vs movies). Current deep learning models struggle with such generalization. We propose using features generated by a Vision Diffusion Model (VDM), aggregated via a transformer, to achieve human-like action recognition across these challenging conditions. We find that generalization is enhanced by the use of a model conditioned on earlier timesteps of the diffusion process to highlight semantic information over pixel level details in the extracted features. We experimentally explore the generalization properties of our approach in classifying actions across animal species, across different viewing angles, and different recording contexts. Our model sets a new state-of-the-art across all three generalization benchmarks, bringing machine action recognition closer to human-like robustness. Project page: $\href{https://www.vision.caltech.edu/actiondiff/}{\texttt{vision.caltech.edu/actiondiff}}$ Code: $\href{https://github.com/frankyaoxiao/ActionDiff}{\texttt{github.com/frankyaoxiao/ActionDiff}}$
Infrared and visible image fusion has garnered considerable attention owing to the strong complementarity of these two modalities in complex, harsh environments. While deep learning-based fusion methods have made remarkable advances in feature extraction, alignment, fusion, and reconstruction, they still depend largely on low-level visual cues, such as texture and contrast, and struggle to capture the high-level semantic information embedded in images. Recent attempts to incorporate text as a source of semantic guidance have relied on unstructured descriptions that neither explicitly model entities, attributes, and relationships nor provide spatial localization, thereby limiting fine-grained fusion performance. To overcome these challenges, we introduce MSGFusion, a multimodal scene graph-guided fusion framework for infrared and visible imagery. By deeply coupling structured scene graphs derived from text and vision, MSGFusion explicitly represents entities, attributes, and spatial relations, and then synchronously refines high-level semantics and low-level details through successive modules for scene graph representation, hierarchical aggregation, and graph-driven fusion. Extensive experiments on multiple public benchmarks show that MSGFusion significantly outperforms state-of-the-art approaches, particularly in detail preservation and structural clarity, and delivers superior semantic consistency and generalizability in downstream tasks such as low-light object detection, semantic segmentation, and medical image fusion.




Acquiring dexterous robotic skills from human video demonstrations remains a significant challenge, largely due to conventional reliance on low-level trajectory replication, which often fails to generalize across varying objects, spatial layouts, and manipulator configurations. To address this limitation, we introduce Graph-Fused Vision-Language-Action (GF-VLA), a unified framework that enables dual-arm robotic systems to perform task-level reasoning and execution directly from RGB-D human demonstrations. GF-VLA employs an information-theoretic approach to extract task-relevant cues, selectively highlighting critical hand-object and object-object interactions. These cues are structured into temporally ordered scene graphs, which are subsequently integrated with a language-conditioned transformer to produce hierarchical behavior trees and interpretable Cartesian motion primitives. To enhance efficiency in bimanual execution, we propose a cross-arm allocation strategy that autonomously determines gripper assignment without requiring explicit geometric modeling. We validate GF-VLA on four dual-arm block assembly benchmarks involving symbolic structure construction and spatial generalization. Empirical results demonstrate that the proposed representation achieves over 95% graph accuracy and 93% subtask segmentation, enabling the language-action planner to generate robust, interpretable task policies. When deployed on a dual-arm robot, these policies attain 94% grasp reliability, 89% placement accuracy, and 90% overall task success across stacking, letter-formation, and geometric reconfiguration tasks, evidencing strong generalization and robustness under diverse spatial and semantic variations.
Multi-contrast MRI sequences allow for the acquisition of images with varying tissue contrast within a single scan. The resulting multi-contrast images can be used to extract quantitative information on tissue microstructure. To make such multi-contrast sequences feasible for clinical routine, the usually very long scan times need to be shortened e.g. through undersampling in k-space. However, this comes with challenges for the reconstruction. In general, advanced reconstruction techniques such as compressed sensing or deep learning-based approaches can enable the acquisition of high-quality images despite the acceleration. In this work, we leverage redundant anatomical information of multi-contrast sequences to achieve even higher acceleration rates. We use undersampling patterns that capture the contrast information located at the k-space center, while performing complementary undersampling across contrasts for high frequencies. To reconstruct this highly sparse k-space data, we propose an implicit neural representation (INR) network that is ideal for using the complementary information acquired across contrasts as it jointly reconstructs all contrast images. We demonstrate the benefits of our proposed INR method by applying it to multi-contrast MRI using the MPnRAGE sequence, where it outperforms the state-of-the-art parallel imaging compressed sensing (PICS) reconstruction method, even at higher acceleration factors.
Collimation in X-ray imaging restricts exposure to the region-of-interest (ROI) and minimizes the radiation dose applied to the patient. The detection of collimator shadows is an essential image-based preprocessing step in digital radiography posing a challenge when edges get obscured by scattered X-ray radiation. Regardless, the prior knowledge that collimation forms polygonal-shaped shadows is evident. For this reason, we introduce a deep learning-based segmentation that is inherently constrained to its geometry. We achieve this by incorporating a differentiable Hough transform-based network to detect the collimation borders and enhance its capability to extract the information about the ROI center. During inference, we combine the information of both tasks to enable the generation of refined, line-constrained segmentation masks. We demonstrate robust reconstruction of collimated regions achieving median Hausdorff distances of 4.3-5.0mm on diverse test sets of real Xray images. While this application involves at most four shadow borders, our method is not fundamentally limited by a specific number of edges.
For bone segmentation, the classical geodesic active contour model is usually limited by its indiscriminate feature extraction, and then struggles to handle the phenomena of edge obstruction, edge leakage and bone fracture. Thus, we propose a fracture interactive geodesic active contour algorithm tailored for bone segmentation, which can better capture bone features and perform robustly to the presence of bone fractures and soft tissues. Inspired by orthopedic knowledge, we construct a novel edge-detector function that combines the intensity and gradient norm, which guides the contour towards bone edges without being obstructed by other soft tissues and therefore reduces mis-segmentation. Furthermore, distance information, where fracture prompts can be embedded, is introduced into the contour evolution as an adaptive step size to stabilize the evolution and help the contour stop at bone edges and fractures. This embedding provides a way to interact with bone fractures and improves the accuracy in the fracture regions. Experiments in pelvic and ankle segmentation demonstrate the effectiveness on addressing the aforementioned problems and show an accurate, stable and consistent performance, indicating a broader application in other bone anatomies. Our algorithm also provides insights into combining the domain knowledge and deep neural networks.
Based on Synesthesia of Machines (SoM), a large language model (LLM) is adapted for multipath generation (LLM4MG) for the first time. Considering a typical sixth-generation (6G) vehicle-to-infrastructure (V2I) scenario, a new multi-modal sensing-communication dataset is constructed, named SynthSoM-V2I, including channel multipath information, millimeter wave (mmWave) radar sensory data, RGB-D images, and light detection and ranging (LiDAR) point clouds. Based on the SynthSoM-V2I dataset, the proposed LLM4MG leverages Large Language Model Meta AI (LLaMA) 3.2 for multipath generation via multi-modal sensory data. The proposed LLM4MG aligns the multi-modal feature space with the LLaMA semantic space through feature extraction and fusion networks. To further achieve general knowledge transfer from the pre-trained LLaMA for multipath generation via multi-modal sensory data, the low-rank adaptation (LoRA) parameter-efficient fine-tuning and propagation-aware prompt engineering are exploited. Simulation results demonstrate that the proposed LLM4MG outperforms conventional deep learning-based methods in terms of line-of-sight (LoS)/non-LoS (NLoS) classification with accuracy of 92.76%, multipath power/delay generation precision with normalized mean square error (NMSE) of 0.099/0.032, and cross-vehicular traffic density (VTD), cross-band, and cross-scenario generalization. The utility of the proposed LLM4MG is validated by real-world generalization. The necessity of high-precision multipath generation for system design is also demonstrated by channel capacity comparison.