Information extraction is the process of automatically extracting structured information from unstructured text data.
The paper introduces a novel framework based on category theory to enhance the explainability of artificial intelligence systems, particularly focusing on word embeddings. Key topics include the construction of categories $\mathcal{L}_T$ and $\mathcal{P}_T$, providing schematic representations of the semantics of a text $ T $, and reframing the selection of the element with maximum probability as a categorical notion. Additionally, the monoidal category $\mathcal{P}_T$ is constructed to visualize various methods of extracting semantic information from $T$, offering a dimension-agnostic definition of semantic spaces reliant solely on information within the text. Furthermore, the paper defines the categories of configurations Conf and word embeddings $\mathcal{Emb}$, accompanied by the concept of divergence as a decoration on $\mathcal{Emb}$. It establishes a mathematically precise method for comparing word embeddings, demonstrating the equivalence between the GloVe and Word2Vec algorithms and the metric MDS algorithm, transitioning from neural network algorithms (black box) to a transparent framework. Finally, the paper presents a mathematical approach to computing biases before embedding and offers insights on mitigating biases at the semantic space level, advancing the field of explainable artificial intelligence.
Recent advances in reasoning and planning capabilities of large language models (LLMs) have enabled their potential as autonomous agents capable of tool use in dynamic environments. However, in multi-turn conversational environments like $\tau$-bench, these agents often struggle with consistent reasoning, adherence to domain-specific policies, and extracting correct information over a long horizon of tool-calls and conversation. To capture and mitigate these failures, we conduct a comprehensive manual analysis of the common errors occurring in the conversation trajectories. We then experiment with reformulations of inputs to the tool-calling agent for improvement in agent decision making. Finally, we propose the Input-Reformulation Multi-Agent (IRMA) framework, which automatically reformulates user queries augmented with relevant domain rules and tool suggestions for the tool-calling agent to focus on. The results show that IRMA significantly outperforms ReAct, Function Calling, and Self-Reflection by 16.1%, 12.7%, and 19.1%, respectively, in overall pass^5 scores. These findings highlight the superior reliability and consistency of IRMA compared to other methods in dynamic environments.




Existing RGB-Event detection methods process the low-information regions of both modalities (background in images and non-event regions in event data) uniformly during feature extraction and fusion, resulting in high computational costs and suboptimal performance. To mitigate the computational redundancy during feature extraction, researchers have respectively proposed token sparsification methods for the image and event modalities. However, these methods employ a fixed number or threshold for token selection, hindering the retention of informative tokens for samples with varying complexity. To achieve a better balance between accuracy and efficiency, we propose FocusMamba, which performs adaptive collaborative sparsification of multimodal features and efficiently integrates complementary information. Specifically, an Event-Guided Multimodal Sparsification (EGMS) strategy is designed to identify and adaptively discard low-information regions within each modality by leveraging scene content changes perceived by the event camera. Based on the sparsification results, a Cross-Modality Focus Fusion (CMFF) module is proposed to effectively capture and integrate complementary features from both modalities. Experiments on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that the proposed method achieves superior performance in both accuracy and efficiency compared to existing methods. The code will be available at https://github.com/Zizzzzzzz/FocusMamba.




Semantic segmentation of overhead remote sensing imagery enables applications in mapping, urban planning, and disaster response. State-of-the-art segmentation networks are typically developed and tuned on ground-perspective photographs and do not directly address remote sensing challenges such as extreme scale variation, foreground-background imbalance, and large image sizes. We explore the incorporation of the differential morphological profile (DMP), a multi-scale shape extraction method based on grayscale morphology, into modern segmentation networks. Prior studies have shown that the DMP can provide critical shape information to Deep Neural Networks to enable superior detection and classification performance in overhead imagery. In this work, we extend prior DMPNet work beyond classification and object detection by integrating DMP features into three state-of-the-art convolutional and transformer semantic segmentation architectures. We utilize both direct input, which adapts the input stem of feature extraction architectures to accept DMP channels, and hybrid architectures, a dual-stream design that fuses RGB and DMP encoders. Using the iSAID benchmark dataset, we evaluate a variety of DMP differentials and structuring element shapes to more effectively provide shape information to the model. Our results show that while non-DMP models generally outperform the direct-input variants, hybrid DMP consistently outperforms direct-input and is capable of surpassing a non-DMP model on mIoU, F1, and Recall.
Constructing high-definition (HD) maps from sensory input requires accurately mapping the road elements in image space to the Bird's Eye View (BEV) space. The precision of this mapping directly impacts the quality of the final vectorized HD map. Existing HD mapping approaches outsource the projection to standard mapping techniques, such as attention-based ones. However, these methods struggle with accuracy due to generalization problems, often hallucinating non-existent road elements. Our key idea is to start with a geometric mapping based on camera parameters and adapt it to the scene to extract relevant map information from camera images. To implement this, we propose a novel probabilistic projection mechanism with confidence scores to (i) refine the mapping to better align with the scene and (ii) filter out irrelevant elements that should not influence HD map generation. In addition, we improve temporal processing by using confidence scores to selectively accumulate reliable information over time. Experiments on new splits of the nuScenes and Argoverse2 datasets demonstrate improved performance over state-of-the-art approaches, indicating better generalization. The improvements are particularly pronounced on nuScenes and in the challenging long perception range. Our code and model checkpoints are available at https://github.com/Fatih-Erdogan/mapping-like-skeptic .




Multimodal relation extraction (MRE) is a crucial task in the fields of Knowledge Graph and Multimedia, playing a pivotal role in multimodal knowledge graph construction. However, existing methods are typically limited to extracting a single type of relational triplet, which restricts their ability to extract triplets beyond the specified types. Directly combining these methods fails to capture dynamic cross-modal interactions and introduces significant computational redundancy. Therefore, we propose a novel \textit{unified multimodal Relation Extraction framework with Multilevel Optimal Transport and mixture-of-Experts}, termed REMOTE, which can simultaneously extract intra-modal and inter-modal relations between textual entities and visual objects. To dynamically select optimal interaction features for different types of relational triplets, we introduce mixture-of-experts mechanism, ensuring the most relevant modality information is utilized. Additionally, considering that the inherent property of multilayer sequential encoding in existing encoders often leads to the loss of low-level information, we adopt a multilevel optimal transport fusion module to preserve low-level features while maintaining multilayer encoding, yielding more expressive representations. Correspondingly, we also create a Unified Multimodal Relation Extraction (UMRE) dataset to evaluate the effectiveness of our framework, encompassing diverse cases where the head and tail entities can originate from either text or image. Extensive experiments show that REMOTE effectively extracts various types of relational triplets and achieves state-of-the-art performanc on almost all metrics across two other public MRE datasets. We release our resources at https://github.com/Nikol-coder/REMOTE.
We study the performance of the Topological Uncertainty (TU) constructed with a trained feedforward neural network (FNN) for Anomaly Detection. Generally, meaningful information can be stored in the hidden layers of the trained FNN, and the TU implementation is one tractable recipe to extract buried information by means of the Topological Data Analysis. We explicate the concept of the TU and the numerical procedures. Then, for a concrete demonstration of the performance test, we employ the Neutron Star data used for inference of the equation of state (EoS). For the training dataset consisting of the input (Neutron Star data) and the output (EoS parameters), we can compare the inferred EoSs and the exact answers to classify the data with the label $k$. The subdataset with $k=0$ leads to the normal inference for which the inferred EoS approximates the answer well, while the subdataset with $k=1$ ends up with the unsuccessful inference. Once the TU is prepared based on the $k$-labled subdatasets, we introduce the cross-TU to quantify the uncertainty of characterizing the $k$-labeled data with the label $j$. The anomaly or unsuccessful inference is correctly detected if the cross-TU for $j=k=1$ is smaller than that for $j=0$ and $k=1$. In our numerical experiment, for various input data, we calculate the cross-TU and estimate the performance of Anomaly Detection. We find that performance depends on FNN hyperparameters, and the success rate of Anomaly Detection exceeds $90\%$ in the best case. We finally discuss further potential of the TU application to retrieve the information hidden in the trained FNN.
Event Extraction (EE) involves automatically identifying and extracting structured information about events from unstructured text, including triggers, event types, and arguments. Traditional discriminative models demonstrate high precision but often exhibit limited recall, particularly for nuanced or infrequent events. Conversely, generative approaches leveraging Large Language Models (LLMs) provide higher semantic flexibility and recall but suffer from hallucinations and inconsistent predictions. To address these challenges, we propose Agreement-based Reflective Inference System (ARIS), a hybrid approach combining a Self Mixture of Agents with a discriminative sequence tagger. ARIS explicitly leverages structured model consensus, confidence-based filtering, and an LLM reflective inference module to reliably resolve ambiguities and enhance overall event prediction quality. We further investigate decomposed instruction fine-tuning for enhanced LLM event extraction understanding. Experiments demonstrate our approach outperforms existing state-of-the-art event extraction methods across three benchmark datasets.
Semantic communication has shown outstanding performance in preserving the overall source information in wireless transmission. For semantically rich content such as images, human users are often interested in specific regions depending on their intent. Moreover, recent semantic coding models are mostly trained on specific datasets. However, real-world applications may involve images out of the distribution of training dataset, which makes generalization a crucial but largely unexplored problem. To incorporate user's intent into semantic coding, in this paper, we propose a generalized user-oriented image semantic coding (UO-ISC) framework, where the user provides a text query indicating its intent. The transmitter extracts features from the source image which are relevant to the user's query. The receiver reconstructs an image based on those features. To enhance the generalization ability, we integrate contrastive language image pre-training (CLIP) model, which is a pretrained large vision-language model (VLM), into our proposed UO-ISC framework. To evaluate the relevance between the reconstructed image and the user's query, we introduce the user-intent relevance loss, which is computed by using a pretrained large VLM, large language-and-vision assistant (LLaVA) model. When performing zero-shot inference on unseen objects, simulation results show that the proposed UO-ISC framework outperforms the state-of-the-art query-aware image semantic coding in terms of the answer match rate.
Graph Convolutional Networks (GCNs) have proven to be highly effective for skeleton-based action recognition, primarily due to their ability to leverage graph topology for feature aggregation, a key factor in extracting meaningful representations. However, despite their success, GCNs often struggle to effectively distinguish between ambiguous actions, revealing limitations in the representation of learned topological and spatial features. To address this challenge, we propose a novel approach, Gaussian Topology Refinement Gated Graph Convolution (G$^{3}$CN), to address the challenge of distinguishing ambiguous actions in skeleton-based action recognition. G$^{3}$CN incorporates a Gaussian filter to refine the skeleton topology graph, improving the representation of ambiguous actions. Additionally, Gated Recurrent Units (GRUs) are integrated into the GCN framework to enhance information propagation between skeleton points. Our method shows strong generalization across various GCN backbones. Extensive experiments on NTU RGB+D, NTU RGB+D 120, and NW-UCLA benchmarks demonstrate that G$^{3}$CN effectively improves action recognition, particularly for ambiguous samples.