What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Jun 09, 2025
Abstract:Topic modeling plays a vital role in uncovering hidden semantic structures within text corpora, but existing models struggle in low-resource settings where limited target-domain data leads to unstable and incoherent topic inference. We address this challenge by formally introducing domain adaptation for low-resource topic modeling, where a high-resource source domain informs a low-resource target domain without overwhelming it with irrelevant content. We establish a finite-sample generalization bound showing that effective knowledge transfer depends on robust performance in both domains, minimizing latent-space discrepancy, and preventing overfitting to the data. Guided by these insights, we propose DALTA (Domain-Aligned Latent Topic Adaptation), a new framework that employs a shared encoder for domain-invariant features, specialized decoders for domain-specific nuances, and adversarial alignment to selectively transfer relevant information. Experiments on diverse low-resource datasets demonstrate that DALTA consistently outperforms state-of-the-art methods in terms of topic coherence, stability, and transferability.
Via

Jul 16, 2025
Abstract:Grasping unknown objects from a single view has remained a challenging topic in robotics due to the uncertainty of partial observation. Recent advances in large-scale models have led to benchmark solutions such as GraspNet-1Billion. However, such learning-based approaches still face a critical limitation in performance robustness for their sensitivity to sensing noise and environmental changes. To address this bottleneck in achieving highly generalized grasping, we abandon the traditional learning framework and introduce a new perspective: similarity matching, where similar known objects are utilized to guide the grasping of unknown target objects. We newly propose a method that robustly achieves unknown-object grasping from a single viewpoint through three key steps: 1) Leverage the visual features of the observed object to perform similarity matching with an existing database containing various object models, identifying potential candidates with high similarity; 2) Use the candidate models with pre-existing grasping knowledge to plan imitative grasps for the unknown target object; 3) Optimize the grasp quality through a local fine-tuning process. To address the uncertainty caused by partial and noisy observation, we propose a multi-level similarity matching framework that integrates semantic, geometric, and dimensional features for comprehensive evaluation. Especially, we introduce a novel point cloud geometric descriptor, the C-FPFH descriptor, which facilitates accurate similarity assessment between partial point clouds of observed objects and complete point clouds of database models. In addition, we incorporate the use of large language models, introduce the semi-oriented bounding box, and develop a novel point cloud registration approach based on plane detection to enhance matching accuracy under single-view conditions. Videos are available at https://youtu.be/qQDIELMhQmk.
* Accepted by IEEE T-RO
Via

Jun 10, 2025
Abstract:Objective: To characterize stigma dimensions, social, and related behavioral circumstances in people living with HIV (PLWHs) seeking care, using natural language processing methods applied to a large collection of electronic health record (EHR) clinical notes from a large integrated health system in the southeast United States. Methods: We identified 9,140 cohort of PLWHs from the UF Health IDR and performed topic modeling analysis using Latent Dirichlet Allocation (LDA) to uncover stigma dimensions, social, and related behavioral circumstances. Domain experts created a seed list of HIV-related stigma keywords, then applied a snowball strategy to iteratively review notes for additional terms until saturation was reached. To identify more target topics, we tested three keyword-based filtering strategies. Domain experts manually reviewed the detected topics using the prevalent terms and key discussion topics. Word frequency analysis was used to highlight the prevalent terms associated with each topic. In addition, we conducted topic variation analysis among subgroups to examine differences across age and sex-specific demographics. Results and Conclusion: Topic modeling on sentences containing at least one keyword uncovered a wide range of topic themes associated with HIV-related stigma, social, and related behaviors circumstances, including "Mental Health Concern and Stigma", "Social Support and Engagement", "Limited Healthcare Access and Severe Illness", "Treatment Refusal and Isolation" and so on. Topic variation analysis across age subgroups revealed differences. Extracting and understanding the HIV-related stigma dimensions, social, and related behavioral circumstances from EHR clinical notes enables scalable, time-efficient assessment, overcoming the limitations of traditional questionnaires and improving patient outcomes.
Via

Jul 17, 2025
Abstract:Data classification without access to labeled samples remains a challenging problem. It usually depends on an appropriately chosen distance between features, a topic addressed in metric learning. Recently, Huizing, Cantini and Peyr\'e proposed to simultaneously learn optimal transport (OT) cost matrices between samples and features of the dataset. This leads to the task of finding positive eigenvectors of a certain nonlinear function that maps cost matrices to OT distances. Having this basic idea in mind, we consider both the algorithmic and the modeling part of unsupervised metric learning. First, we examine appropriate algorithms and their convergence. In particular, we propose to use the stochastic random function iteration algorithm and prove that it converges linearly for our setting, although our operators are not paracontractive as it was required for convergence so far. Second, we ask the natural question if the OT distance can be replaced by other distances. We show how Mahalanobis-like distances fit into our considerations. Further, we examine an approach via graph Laplacians. In contrast to the previous settings, we have just to deal with linear functions in the wanted matrices here, so that simple algorithms from linear algebra can be applied.
* 10 figures, 1 table
Via

Jul 02, 2025
Abstract:As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
* Camera-ready version. Accepted to ACL 2025. 10 pages, 4 figures, 6
tables
Via

Jul 15, 2025
Abstract:Abstract visual reasoning (AVR) enables humans to quickly discover and generalize abstract rules to new scenarios. Designing intelligent systems with human-like AVR abilities has been a long-standing topic in the artificial intelligence community. Deep AVR solvers have recently achieved remarkable success in various AVR tasks. However, they usually use task-specific designs or parameters in different tasks. In such a paradigm, solving new tasks often means retraining the model, and sometimes retuning the model architectures, which increases the cost of solving AVR problems. In contrast to task-specific approaches, this paper proposes a novel Unified Conditional Generative Solver (UCGS), aiming to address multiple AVR tasks in a unified framework. First, we prove that some well-known AVR tasks can be reformulated as the problem of estimating the predictability of target images in problem panels. Then, we illustrate that, under the proposed framework, training one conditional generative model can solve various AVR tasks. The experiments show that with a single round of multi-task training, UCGS demonstrates abstract reasoning ability across various AVR tasks. Especially, UCGS exhibits the ability of zero-shot reasoning, enabling it to perform abstract reasoning on problems from unseen AVR tasks in the testing phase.
Via

Jun 12, 2025
Abstract:Detecting life-threatening language is essential for safeguarding individuals in distress, promoting mental health and well-being, and preventing potential harm and loss of life. This paper presents an effective approach to identifying life-threatening texts using large language models (LLMs) and compares them with traditional methods such as bag of words, word embedding, topic modeling, and Bidirectional Encoder Representations from Transformers. We fine-tune three open-source LLMs including Gemma, Mistral, and Llama-2 using their 7B parameter variants on different datasets, which are constructed with class balance, imbalance, and extreme imbalance scenarios. Experimental results demonstrate a strong performance of LLMs against traditional methods. More specifically, Mistral and Llama-2 models are top performers in both balanced and imbalanced data scenarios while Gemma is slightly behind. We employ the upsampling technique to deal with the imbalanced data scenarios and demonstrate that while this method benefits traditional approaches, it does not have as much impact on LLMs. This study demonstrates a great potential of LLMs for real-world life-threatening language detection problems.
Via

Jul 15, 2025
Abstract:Recent advancements in multimodal large language models (MLLMs) have driven researchers to explore how well these models read data visualizations, e.g., bar charts, scatter plots. More recently, attention has shifted to visual question answering with maps (Map-VQA). However, Map-VQA research has primarily focused on choropleth maps, which cover only a limited range of thematic categories and visual analytical tasks. To address these gaps, we introduce MapIQ, a benchmark dataset comprising 14,706 question-answer pairs across three map types: choropleth maps, cartograms, and proportional symbol maps spanning topics from six distinct themes (e.g., housing, crime). We evaluate multiple MLLMs using six visual analytical tasks, comparing their performance against one another and a human baseline. An additional experiment examining the impact of map design changes (e.g., altered color schemes, modified legend designs, and removal of map elements) provides insights into the robustness and sensitivity of MLLMs, their reliance on internal geographic knowledge, and potential avenues for improving Map-VQA performance.
* Published as a conference paper at COLM 2025
Via

Jun 11, 2025
Abstract:A comprehensive understanding of traffic accidents is essential for improving city safety and informing policy decisions. In this study, we analyze traffic incidents in Munich to identify patterns and characteristics that distinguish different types of accidents. The dataset consists of both structured tabular features, such as location, time, and weather conditions, as well as unstructured free-text descriptions detailing the circumstances of each accident. Each incident is categorized into one of seven predefined classes. To assess the reliability of these labels, we apply NLP methods, including topic modeling and few-shot learning, which reveal inconsistencies in the labeling process. These findings highlight potential ambiguities in accident classification and motivate a refined predictive approach. Building on these insights, we develop a classification model that achieves high accuracy in assigning accidents to their respective categories. Our results demonstrate that textual descriptions contain the most informative features for classification, while the inclusion of tabular data provides only marginal improvements. These findings emphasize the critical role of free-text data in accident analysis and highlight the potential of transformer-based models in improving classification reliability.
* 18 pages, 4 tables, 4 figures. This paper will appear in the
ECML-PKDD 2025 Applied Data Science (ADS) track
Via

Jun 14, 2025
Abstract:Recent work shows that Sparse Autoencoders (SAE) applied to large language model (LLM) layers have neurons corresponding to interpretable concepts. These SAE neurons can be modified to align generated outputs, but only towards pre-identified topics and with some parameter tuning. Our approach leverages the observational and modification properties of SAEs to enable alignment for any topic. This method 1) scores each SAE neuron by its semantic similarity to an alignment text and uses them to 2) modify SAE-layer-level outputs by emphasizing topic-aligned neurons. We assess the alignment capabilities of this approach on diverse public topic datasets including Amazon reviews, Medicine, and Sycophancy, across the currently available open-source LLMs and SAE pairs (GPT2 and Gemma) with multiple SAEs configurations. Experiments aligning to medical prompts reveal several benefits over fine-tuning, including increased average language acceptability (0.25 vs. 0.5), reduced training time across multiple alignment topics (333.6s vs. 62s), and acceptable inference time for many applications (+0.00092s/token). Our open-source code is available at github.com/IBM/sae-steering.
Via
