Information extraction is the process of automatically extracting structured information from unstructured text data.
Large models achieve strong performance on Vision-and-Language Navigation (VLN) tasks, but are costly to run in resource-limited environments. Token pruning offers appealing tradeoffs for efficiency with minimal performance loss by reducing model input size, but prior work overlooks VLN-specific challenges. For example, information loss from pruning can effectively increase computational cost due to longer walks. Thus, the inability to identify uninformative tokens undermines the supposed efficiency gains from pruning. To address this, we propose Navigation-Aware Pruning (NAP), which uses navigation-specific traits to simplify the pruning process by pre-filtering tokens into foreground and background. For example, image views are filtered based on whether the agent can navigate in that direction. We also extract navigation-relevant instructions using a Large Language Model. After filtering, we focus pruning on background tokens, minimizing information loss. To further help avoid increases in navigation length, we discourage backtracking by removing low-importance navigation nodes. Experiments on standard VLN benchmarks show NAP significantly outperforms prior work, preserving higher success rates while saving more than 50% FLOPS.
Accurate abdominal multi-organ segmentation is critical for clinical applications. Although numerous deep learning-based automatic segmentation methods have been developed, they still struggle to segment small, irregular, or anatomically complex organs. Moreover, most current methods focus on spatial-domain analysis, often overlooking the synergistic potential of frequency-domain representations. To address these limitations, we propose a novel framework named FMD-TransUNet for precise abdominal multi-organ segmentation. It innovatively integrates the Multi-axis External Weight Block (MEWB) and the improved dual attention module (DA+) into the TransUNet framework. The MEWB extracts multi-axis frequency-domain features to capture both global anatomical structures and local boundary details, providing complementary information to spatial-domain representations. The DA+ block utilizes depthwise separable convolutions and incorporates spatial and channel attention mechanisms to enhance feature fusion, reduce redundant information, and narrow the semantic gap between the encoder and decoder. Experimental validation on the Synapse dataset shows that FMD-TransUNet outperforms other recent state-of-the-art methods, achieving an average DSC of 81.32\% and a HD of 16.35 mm across eight abdominal organs. Compared to the baseline model, the average DSC increased by 3.84\%, and the average HD decreased by 15.34 mm. These results demonstrate the effectiveness of FMD-TransUNet in improving the accuracy of abdominal multi-organ segmentation.
In large scale e-commerce marketplaces, duplicate product listings frequently cause consumer confusion and operational inefficiencies, degrading trust on the platform and increasing costs. Traditional keyword-based search methodologies falter in accurately identifying duplicates due to their reliance on exact textual matches, neglecting semantic similarities inherent in product titles. To address these challenges, we introduce a scalable, multimodal product deduplication designed specifically for the e-commerce domain. Our approach employs a domain-specific text model grounded in BERT architecture in conjunction with MaskedAutoEncoders for image representations. Both of these architectures are augmented with dimensionality reduction techniques to produce compact 128-dimensional embeddings without significant information loss. Complementing this, we also developed a novel decider model that leverages both text and image vectors. By integrating these feature extraction mechanisms with Milvus, an optimized vector database, our system can facilitate efficient and high-precision similarity searches across extensive product catalogs exceeding 200 million items with just 100GB of system RAM consumption. Empirical evaluations demonstrate that our matching system achieves a macro-average F1 score of 0.90, outperforming third-party solutions which attain an F1 score of 0.83. Our findings show the potential of combining domain-specific adaptations with state-of-the-art machine learning techniques to mitigate duplicate listings in large-scale e-commerce environments.
Unstructured data, such as text, images, audio, and video, comprises the vast majority of the world's information, yet it remains poorly supported by traditional data systems that rely on structured formats for computation. We argue for a new paradigm, which we call computing on unstructured data, built around three stages: extraction of latent structure, transformation of this structure through data processing techniques, and projection back into unstructured formats. This bi-directional pipeline allows unstructured data to benefit from the analytical power of structured computation, while preserving the richness and accessibility of unstructured representations for human and AI consumption. We illustrate this paradigm through two use cases and present the research components that need to be developed in a new data system called MXFlow.
Scammers are increasingly harnessing generative AI(GenAI) technologies to produce convincing phishing content at scale, amplifying financial fraud and undermining public trust. While conventional defenses, such as detection algorithms, user training, and reactive takedown efforts remain important, they often fall short in dismantling the infrastructure scammers depend on, including mule bank accounts and cryptocurrency wallets. To bridge this gap, a proactive and emerging strategy involves using conversational honeypots to engage scammers and extract actionable threat intelligence. This paper presents the first large-scale, real-world evaluation of a scambaiting system powered by large language models (LLMs). Over a five-month deployment, the system initiated over 2,600 engagements with actual scammers, resulting in a dataset of more than 18,700 messages. It achieved an Information Disclosure Rate (IDR) of approximately 32%, successfully extracting sensitive financial information such as mule accounts. Additionally, the system maintained a Human Acceptance Rate (HAR) of around 70%, indicating strong alignment between LLM-generated responses and human operator preferences. Alongside these successes, our analysis reveals key operational challenges. In particular, the system struggled with engagement takeoff: only 48.7% of scammers responded to the initial seed message sent by defenders. These findings highlight the need for further refinement and provide actionable insights for advancing the design of automated scambaiting systems.
Cross-view geo-localization aims to determine the geographical location of a query image by matching it against a gallery of images. This task is challenging due to the significant appearance variations of objects observed from variable views, along with the difficulty in extracting discriminative features. Existing approaches often rely on extracting features through feature map segmentation while neglecting spatial and semantic information. To address these issues, we propose the EVA02-based Multi-scale Frequency Attention Fusion (MFAF) method. The MFAF method consists of Multi-Frequency Branch-wise Block (MFB) and the Frequency-aware Spatial Attention (FSA) module. The MFB block effectively captures both low-frequency structural features and high-frequency edge details across multiple scales, improving the consistency and robustness of feature representations across various viewpoints. Meanwhile, the FSA module adaptively focuses on the key regions of frequency features, significantly mitigating the interference caused by background noise and viewpoint variability. Extensive experiments on widely recognized benchmarks, including University-1652, SUES-200, and Dense-UAV, demonstrate that the MFAF method achieves competitive performance in both drone localization and drone navigation tasks.
In real-world scenarios, large graphs represent relationships among entities in complex systems. Mining these large graphs often containing millions of nodes and edges helps uncover structural patterns and meaningful insights. Dividing a large graph into smaller subgraphs facilitates complex system analysis by revealing local information. Community detection extracts clusters or communities of graphs based on statistical methods and machine learning models using various optimization techniques. Structure based community detection methods are more suitable for applying to graphs because they do not rely heavily on rich node or edge attribute information. The features derived from these communities can improve downstream graph mining tasks, such as link prediction and node classification. In real-world applications, we often lack ground truth community information. Additionally, there is neither a universally accepted gold standard for community detection nor a single method that is consistently optimal across diverse applications. In many cases, it is unclear how practitioners select community detection methods, and choices are often made without explicitly considering their potential impact on downstream tasks. In this study, we investigate whether the choice of community detection algorithm significantly influences the performance of downstream applications. We propose a framework capable of integrating various community detection methods to systematically evaluate their effects on downstream task outcomes. Our comparative analysis reveals that specific community detection algorithms yield superior results in certain applications, highlighting that method selection substantially affects performance.
Realistic sound simulation plays a critical role in many applications. A key element in sound simulation is the room impulse response (RIR), which characterizes how sound propagates from a source to a listener within a given space. Recent studies have applied neural implicit methods to learn RIR using context information collected from the environment, such as scene images. However, these approaches do not effectively leverage explicit geometric information from the environment. To further exploit the potential of neural implicit models with direct geometric features, we present Mesh-infused Neural Acoustic Field (MiNAF), which queries a rough room mesh at given locations and extracts distance distributions as an explicit representation of local context. Our approach demonstrates that incorporating explicit local geometric features can better guide the neural network in generating more accurate RIR predictions. Through comparisons with conventional and state-of-the-art baseline methods, we show that MiNAF performs competitively across various evaluation metrics. Furthermore, we verify the robustness of MiNAF in datasets with limited training samples, demonstrating an advance in high-fidelity sound simulation.
Large Language Models (LLMs) hold significant promise for electrocardiogram (ECG) analysis, yet challenges remain regarding transferability, time-scale information learning, and interpretability. Current methods suffer from model-specific ECG encoders, hindering transfer across LLMs. Furthermore, LLMs struggle to capture crucial time-scale information inherent in ECGs due to Transformer limitations. And their black-box nature limits clinical adoption. To address these limitations, we introduce ECG-aBcDe, a novel ECG encoding method that transforms ECG signals into a universal ECG language readily interpretable by any LLM. By constructing a hybrid dataset of ECG language and natural language, ECG-aBcDe enables direct fine-tuning of pre-trained LLMs without architectural modifications, achieving "construct once, use anywhere" capability. Moreover, the bidirectional convertibility between ECG and ECG language of ECG-aBcDe allows for extracting attention heatmaps from ECG signals, significantly enhancing interpretability. Finally, ECG-aBcDe explicitly represents time-scale information, mitigating Transformer limitations. This work presents a new paradigm for integrating ECG analysis with LLMs. Compared with existing methods, our method achieves competitive performance on ROUGE-L and METEOR. Notably, it delivers significant improvements in the BLEU-4, with improvements of 2.8 times and 3.9 times in in-dataset and cross-dataset evaluations, respectively, reaching scores of 42.58 and 30.76. These results provide strong evidence for the feasibility of the new paradigm.
The rise of digital ecosystems has exposed the financial sector to evolving abuse and criminal tactics that share operational knowledge and techniques both within and across different environments (fiat-based, crypto-assets, etc.). Traditional rule-based systems lack the adaptability needed to detect sophisticated or coordinated criminal behaviors (patterns), highlighting the need for strategies that analyze actors' interactions to uncover suspicious activities and extract their modus operandi. For this reason, in this work, we propose an approach that integrates graph machine learning and network analysis to improve the detection of well-known topological patterns within transactional graphs. However, a key challenge lies in the limitations of traditional financial datasets, which often provide sparse, unlabeled information that is difficult to use for graph-based pattern analysis. Therefore, we firstly propose a four-step preprocessing framework that involves (i) extracting graph structures, (ii) considering data temporality to manage large node sets, (iii) detecting communities within, and (iv) applying automatic labeling strategies to generate weak ground-truth labels. Then, once the data is processed, Graph Autoencoders are implemented to distinguish among the well-known topological patterns. Specifically, three different GAE variants are implemented and compared in this analysis. Preliminary results show that this pattern-focused, topology-driven method is effective for detecting complex financial crime schemes, offering a promising alternative to conventional rule-based detection systems.