Abstract:Professional societies often publish curriculum guidelines to help programs align their content to international standards. In Computer Science, the primary standard is published by ACM and IEEE and provide detailed guidelines for what should be and could be included in a Computer Science program. While very helpful, it remains difficult for program administrators to assess how much of the guidelines is being covered by a CS program. This is in particular due to the extensiveness of the guidelines, containing thousands of individual items. As such, it is time consuming and cognitively demanding to audit every course to confidently mark everything that is actually being covered. Our preliminary work indicated that it takes about a day of work per course. In this work, we propose using Natural Language Processing techniques to accelerate the process. We explore two kinds of techniques, the first relying on traditional tools for parsing, tagging, and embeddings, while the second leverages the power of Large Language Models. We evaluate the application of these techniques to classify a corpus of pedagogical materials and show that we can meaningfully classify documents automatically.
Abstract:In real-world scenarios, large graphs represent relationships among entities in complex systems. Mining these large graphs often containing millions of nodes and edges helps uncover structural patterns and meaningful insights. Dividing a large graph into smaller subgraphs facilitates complex system analysis by revealing local information. Community detection extracts clusters or communities of graphs based on statistical methods and machine learning models using various optimization techniques. Structure based community detection methods are more suitable for applying to graphs because they do not rely heavily on rich node or edge attribute information. The features derived from these communities can improve downstream graph mining tasks, such as link prediction and node classification. In real-world applications, we often lack ground truth community information. Additionally, there is neither a universally accepted gold standard for community detection nor a single method that is consistently optimal across diverse applications. In many cases, it is unclear how practitioners select community detection methods, and choices are often made without explicitly considering their potential impact on downstream tasks. In this study, we investigate whether the choice of community detection algorithm significantly influences the performance of downstream applications. We propose a framework capable of integrating various community detection methods to systematically evaluate their effects on downstream task outcomes. Our comparative analysis reveals that specific community detection algorithms yield superior results in certain applications, highlighting that method selection substantially affects performance.