Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
This study proposes the dual technological innovation framework, including a cross-modal differ entiated quantization framework for vision-language models (VLMs) and a scene-aware vectorized memory multi-agent system for visually impaired assistance. The modular framework was developed implementing differentiated processing strategies, effectively reducing memory requirements from 38GB to 16GB while maintaining model performance. The multi-agent architecture combines scene classification, vectorized memory, and multimodal interaction, enabling persistent storage and efficient retrieval of scene memories. Through perception-memory-reasoning workflows, the system provides environmental information beyond the current view using historical memories. Experiments show the quantized 19B-parameter model only experiences a 2.05% performance drop on MMBench and maintains 63.7 accuracy on OCR-VQA (original: 64.9), outperforming smaller models with equivalent memory requirements like the Molmo-7B series. The system maintains response latency between 2.83-3.52 seconds from scene analysis to initial speech output, substantially faster than non-streaming methods. This research advances computational efficiency and assistive technology, offering visually impaired users comprehensive real-time assistance in scene perception, text recognition, and navigation.
This paper presents the TEA-ASLP's system submitted to the MLC-SLM 2025 Challenge, addressing multilingual conversational automatic speech recognition (ASR) in Task I and speech diarization ASR in Task II. For Task I, we enhance Ideal-LLM model by integrating known language identification and a multilingual MOE LoRA structure, along with using CTC-predicted tokens as prompts to improve autoregressive generation. The model is trained on approximately 180k hours of multilingual ASR data. In Task II, we replace the baseline English-Chinese speaker diarization model with a more suitable English-only version. Our approach achieves a 30.8% reduction in word error rate (WER) compared to the baseline speech language model, resulting in a final WER of 9.60% in Task I and a time-constrained minimum-permutation WER of 17.49% in Task II, earning first and second place in the respective challenge tasks.
This paper describes our Triple X speech recognition system submitted to Task 1 of the Multi-Lingual Conversational Speech Language Modeling (MLC-SLM) Challenge. Our work focuses on optimizing speech recognition accuracy in multilingual conversational scenarios through an innovative encoder-adapter-LLM architecture. This framework harnesses the powerful reasoning capabilities of text-based large language models while incorporating domain-specific adaptations. To further enhance multilingual recognition performance, we adopted a meticulously designed multi-stage training strategy leveraging extensive multilingual audio datasets. Experimental results demonstrate that our approach achieves competitive Word Error Rate (WER) performance on both dev and test sets, obtaining second place in the challenge ranking.
Individuals regularly experience Hearing Difficulty Moments in everyday conversation. Identifying these moments of hearing difficulty has particular significance in the field of hearing assistive technology where timely interventions are key for realtime hearing assistance. In this paper, we propose and compare machine learning solutions for continuously detecting utterances that identify these specific moments in conversational audio. We show that audio language models, through their multimodal reasoning capabilities, excel at this task, significantly outperforming a simple ASR hotword heuristic and a more conventional fine-tuning approach with Wav2Vec, an audio-only input architecture that is state-of-the-art for automatic speech recognition (ASR).
Automatic Speech Recognition (ASR) plays a crucial role in human-machine interaction and serves as an interface for a wide range of applications. Traditionally, ASR performance has been evaluated using Word Error Rate (WER), a metric that quantifies the number of insertions, deletions, and substitutions in the generated transcriptions. However, with the increasing adoption of large and powerful Large Language Models (LLMs) as the core processing component in various applications, the significance of different types of ASR errors in downstream tasks warrants further exploration. In this work, we analyze the capabilities of LLMs to correct errors introduced by ASRs and propose a new measure to evaluate ASR performance for LLM-powered applications.
This paper presents our system for CCL25-Eval Task 10, addressing Fine-Grained Chinese Hate Speech Recognition (FGCHSR). We propose a novel SRAG-MAV framework that synergistically integrates task reformulation(TR), Self-Retrieval-Augmented Generation (SRAG), and Multi-Round Accumulative Voting (MAV). Our method reformulates the quadruplet extraction task into triplet extraction, uses dynamic retrieval from the training set to create contextual prompts, and applies multi-round inference with voting to improve output stability and performance. Our system, based on the Qwen2.5-7B model, achieves a Hard Score of 26.66, a Soft Score of 48.35, and an Average Score of 37.505 on the STATE ToxiCN dataset, significantly outperforming baselines such as GPT-4o (Average Score 15.63) and fine-tuned Qwen2.5-7B (Average Score 35.365). The code is available at https://github.com/king-wang123/CCL25-SRAG-MAV.
Prior work on language modeling showed conflicting findings about whether morphologically aligned approaches to tokenization improve performance, particularly for languages with complex morphology. To investigate this, we select a typologically diverse set of languages: Telugu (agglutinative), Hindi (primarily fusional with some agglutination), and English (fusional). We conduct a comprehensive evaluation of language models -- starting from tokenizer training and extending through the finetuning and downstream task evaluation. To account for the consistent performance differences observed across tokenizer variants, we focus on two key factors: morphological alignment and tokenization quality. To assess morphological alignment of tokenizers in Telugu, we create a dataset containing gold morpheme segmentations of 600 derivational and 7000 inflectional word forms. Our experiments reveal that better morphological alignment correlates positively -- though moderately -- with performance in syntax-based tasks such as Parts-of-Speech tagging, Named Entity Recognition and Dependency Parsing. However, we also find that the tokenizer algorithm (Byte-pair Encoding vs. Unigram) plays a more significant role in influencing downstream performance than morphological alignment alone. Naive Unigram tokenizers outperform others across most settings, though hybrid tokenizers that incorporate morphological segmentation significantly improve performance within the BPE framework. In contrast, intrinsic metrics like Corpus Token Count (CTC) and R\'enyi entropy showed no correlation with downstream performance.
While the last decade has witnessed significant advancements in Automatic Speech Recognition (ASR) systems, performance of these systems for individuals with speech disabilities remains inadequate, partly due to limited public training data. To bridge this gap, the 2025 Interspeech Speech Accessibility Project (SAP) Challenge was launched, utilizing over 400 hours of SAP data collected and transcribed from more than 500 individuals with diverse speech disabilities. Hosted on EvalAI and leveraging the remote evaluation pipeline, the SAP Challenge evaluates submissions based on Word Error Rate and Semantic Score. Consequently, 12 out of 22 valid teams outperformed the whisper-large-v2 baseline in terms of WER, while 17 teams surpassed the baseline on SemScore. Notably, the top team achieved the lowest WER of 8.11\%, and the highest SemScore of 88.44\% at the same time, setting new benchmarks for future ASR systems in recognizing impaired speech.
Target Speaker Extraction (TSE) plays a critical role in enhancing speech signals in noisy and multi-speaker environments. This paper presents an end-to-end TSE model that incorporates Direction of Arrival (DOA) and beamwidth embeddings to extract speech from a specified spatial region centered around the DOA. Our approach efficiently captures spatial and temporal features, enabling robust performance in highly complex scenarios with multiple simultaneous speakers. Experimental results demonstrate that the proposed model not only significantly enhances the target speech within the defined beamwidth but also effectively suppresses interference from other directions, producing a clear and isolated target voice. Furthermore, the model achieves remarkable improvements in downstream Automatic Speech Recognition (ASR) tasks, making it particularly suitable for real-world applications.
Speech technology remains out of reach for most of the over 2300 languages in Africa. We present the first systematic assessment of large-scale synthetic voice corpora for African ASR. We apply a three-step process: LLM-driven text creation, TTS voice synthesis, and ASR fine-tuning. Eight out of ten languages for which we create synthetic text achieved readability scores above 5 out of 7. We evaluated ASR improvement for three (Hausa, Dholuo, Chichewa) and created more than 2,500 hours of synthetic voice data at below 1% of the cost of real data. Fine-tuned Wav2Vec-BERT-2.0 models trained on 250h real and 250h synthetic Hausa matched a 500h real-data-only baseline, while 579h real and 450h to 993h synthetic data created the best performance. We also present gender-disaggregated ASR performance evaluation. For very low-resource languages, gains varied: Chichewa WER improved about 6.5% relative with a 1:2 real-to-synthetic ratio; a 1:1 ratio for Dholuo showed similar improvements on some evaluation data, but not on others. Investigating intercoder reliability, ASR errors and evaluation datasets revealed the need for more robust reviewer protocols and more accurate evaluation data. All data and models are publicly released to invite further work to improve synthetic data for African languages.