Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
This paper proposes an automatic speech recognition (ASR) model for hate speech using large language models (LLMs). The proposed method integrates the encoder of the ASR model with the decoder of the LLMs, enabling simultaneous transcription and censorship tasks to prevent the exposure of harmful content. Instruction tuning of the LLM to mask hate-related words with specific tokens requires an annotated hate speech dataset, which is limited. We generate text samples using an LLM with the Chain-of-Thought (CoT) prompting technique guided by cultural context and examples and then convert them into speech samples using a text-to-speech (TTS) system. However, some of them contain non-hate speech samples with hate-related words, which degrades the censorship performance. This paper filters the samples which text classification models correctly label as hate content. By adjusting the threshold for the number of correct answer models, we can control the level of hate in the generated dataset, allowing us to train the LLMs through curriculum learning in a gradual manner. Experimental results show that the proposed method achieves a masking accuracy of 58.6\% for hate-related words, surpassing previous baselines. We also confirm that the curriculum training contributes to the efficiency of both transcription and censorship tasks.
Automatic speech recognition systems have achieved remarkable performance on fluent speech but continue to degrade significantly when processing stuttered speech, a limitation that is particularly acute for low-resource languages like Indonesian where specialized datasets are virtually non-existent. To overcome this scarcity, we propose a data augmentation framework that generates synthetic stuttered audio by injecting repetitions and prolongations into fluent text through a combination of rule-based transformations and large language models followed by text-to-speech synthesis. We apply this synthetic data to fine-tune a pre-trained Indonesian Whisper model using transfer learning, enabling the architecture to adapt to dysfluent acoustic patterns without requiring large-scale real-world recordings. Our experiments demonstrate that this targeted synthetic exposure consistently reduces recognition errors on stuttered speech while maintaining performance on fluent segments, validating the utility of synthetic data pipelines for developing more inclusive speech technologies in under-represented languages.
The development of resource-constrained approaches to automatic speech recognition (ASR) is of great interest due to its broad applicability to many low-resource languages for which there is scant usable data. Existing approaches to many low-resource natural language processing tasks leverage additional data from higher-resource languages that are closely related to a target low-resource language. One increasingly popular approach uses task arithmetic to combine models trained on different tasks to create a model for a task where there is little to no training data. In this paper, we consider training on a particular language to be a task, and we generate task vectors by fine-tuning variants of the Whisper ASR system. For pairings of high- and low-resource languages, we merge task vectors via a linear combination, optimizing the weights of the linear combination on the downstream word error rate on the low-resource target language's validation set. We find that this approach consistently improves performance on the target languages.
Understanding the structure of complex, nonstationary, high-dimensional time-evolving signals is a central challenge in scientific data analysis. In many domains, such as speech and biomedical signal processing, the ability to learn disentangled and interpretable representations is critical for uncovering latent generative mechanisms. Traditional approaches to unsupervised representation learning, including variational autoencoders (VAEs), often struggle to capture the temporal and spectral diversity inherent in such data. Here we introduce variational decomposition autoencoding (VDA), a framework that extends VAEs by incorporating a strong structural bias toward signal decomposition. VDA is instantiated through variational decomposition autoencoders (DecVAEs), i.e., encoder-only neural networks that combine a signal decomposition model, a contrastive self-supervised task, and variational prior approximation to learn multiple latent subspaces aligned with time-frequency characteristics. We demonstrate the effectiveness of DecVAEs on simulated data and three publicly available scientific datasets, spanning speech recognition, dysarthria severity evaluation, and emotional speech classification. Our results demonstrate that DecVAEs surpass state-of-the-art VAE-based methods in terms of disentanglement quality, generalization across tasks, and the interpretability of latent encodings. These findings suggest that decomposition-aware architectures can serve as robust tools for extracting structured representations from dynamic signals, with potential applications in clinical diagnostics, human-computer interaction, and adaptive neurotechnologies.
With the development of teleconferencing and in-vehicle voice assistants, far-field multi-speaker speech recognition has become a hot research topic. Recently, a multi-channel transformer (MCT) has been proposed, which demonstrates the ability of the transformer to model far-field acoustic environments. However, MCT cannot encode high-dimensional acoustic features for each speaker from mixed input audio because of the interference between speakers. Based on these, we propose the multi-channel multi-speaker transformer (M2Former) for far-field multi-speaker ASR in this paper. Experiments on the SMS-WSJ benchmark show that the M2Former outperforms the neural beamformer, MCT, dual-path RNN with transform-average-concatenate and multi-channel deep clustering based end-to-end systems by 9.2%, 14.3%, 24.9%, and 52.2% respectively, in terms of relative word error rate reduction.
Large Multimodal Models (LMMs) for video-audio understanding have traditionally been evaluated only on shorter videos of a few minutes long. In this paper, we introduce QMAVIS (Q Team-Multimodal Audio Video Intelligent Sensemaking), a novel long video-audio understanding pipeline built through a late fusion of LMMs, Large Language Models, and speech recognition models. QMAVIS addresses the gap in long-form video analytics, particularly for longer videos of a few minutes to beyond an hour long, opening up new potential applications in sensemaking, video content analysis, embodied AI, etc. Quantitative experiments using QMAVIS demonstrated a 38.75% improvement over state-of-the-art video-audio LMMs like VideoLlaMA2 and InternVL2 on the VideoMME (with subtitles) dataset, which comprises long videos with audio information. Evaluations on other challenging video understanding datasets like PerceptionTest and EgoSchema saw up to 2% improvement, indicating competitive performance. Qualitative experiments also showed that QMAVIS is able to extract the nuances of different scenes in a long video audio content while understanding the overarching narrative. Ablation studies were also conducted to ascertain the impact of each component in the fusion pipeline.
This paper presents an AI glasses system that integrates real-time voice processing, artificial intelligence(AI) agents, and cross-network streaming capabilities. The system employs dual-agent architecture where Agent 01 handles Automatic Speech Recognition (ASR) and Agent 02 manages AI processing through local Large Language Models (LLMs), Model Context Protocol (MCP) tools, and Retrieval-Augmented Generation (RAG). The system supports real-time RTSP streaming for voice and video data transmission, eye tracking data collection, and remote task execution through RabbitMQ messaging. Implementation demonstrates successful voice command processing with multilingual support and cross-platform task execution capabilities.
Multilingual speech foundation models such as Whisper are trained on web-scale data, where data for each language consists of a myriad of regional varieties. However, different regional varieties often employ different scripts to write the same language, rendering speech recognition output also subject to non-determinism in the output script. To mitigate this problem, we show that script is linearly encoded in the activation space of multilingual speech models, and that modifying activations at inference time enables direct control over output script. We find the addition of such script vectors to activations at test time can induce script change even in unconventional language-script pairings (e.g. Italian in Cyrillic and Japanese in Latin script). We apply this approach to inducing post-hoc control over the script of speech recognition output, where we observe competitive performance across all model sizes of Whisper.
Automatic speech recognition (ASR) still covers only a small fraction of the world's languages, mainly due to supervised data scarcity. In-context learning (ICL) with large language models (LLMs) addresses this problem, but prior work largely focuses on high-resource languages covered during training and text-only settings. This paper investigates whether speech LLMs can learn unseen languages with multimodal ICL (MICL), and how this learning can be used to improve ASR. We conduct experiments with two speech LLMs, Phi-4 and Qwen3-Omni, on three diverse endangered languages. Firstly, we find that MICL is effective for unseen languages, leveraging both speech and text modalities. We further show that cross-lingual transfer learning improves MICL efficiency on target languages without training on them. Moreover, we analyze attention patterns to interpret MICL mechanisms, and we observe layer-dependent preferences between audio and text context, with an overall bias towards text. Finally, we show that prompt-based ASR with speech LLMs performs poorly on unseen languages, motivating a simple ASR system that combines a stronger acoustic model with a speech LLM via MICL-based selection of acoustic hypotheses. Results show that MICL consistently improves ASR performance, and that cross-lingual transfer learning matches or outperforms corpus-trained language models without using target-language data. Our code is publicly available.
The emergence of large-scale automatic speech recognition (ASR) models such as Whisper has greatly expanded their adoption across diverse real-world applications. Ensuring robustness against even minor input perturbations is therefore critical for maintaining reliable performance in real-time environments. While prior work has mainly examined accuracy degradation under adversarial attacks, robustness with respect to efficiency remains largely unexplored. This narrow focus provides only a partial understanding of ASR model vulnerabilities. To address this gap, we conduct a comprehensive study of ASR robustness under multiple attack scenarios. We introduce MORE, a multi-objective repetitive doubling encouragement attack, which jointly degrades recognition accuracy and inference efficiency through a hierarchical staged repulsion-anchoring mechanism. Specifically, we reformulate multi-objective adversarial optimization into a hierarchical framework that sequentially achieves the dual objectives. To further amplify effectiveness, we propose a novel repetitive encouragement doubling objective (REDO) that induces duplicative text generation by maintaining accuracy degradation and periodically doubling the predicted sequence length. Overall, MORE compels ASR models to produce incorrect transcriptions at a substantially higher computational cost, triggered by a single adversarial input. Experiments show that MORE consistently yields significantly longer transcriptions while maintaining high word error rates compared to existing baselines, underscoring its effectiveness in multi-objective adversarial attack.