Abstract:The rise of online counseling services has highlighted the need for effective training methods for future counselors. This paper extends research on VirCo, a Virtual Client for Online Counseling, designed to complement traditional role-playing methods in academic training by simulating realistic client interactions. Building on previous work, we introduce a new dataset incorporating adversarial attacks to test the ability of large language models (LLMs) to maintain their assigned roles (role-consistency). The study focuses on evaluating the role consistency and coherence of the Vicuna model's responses, comparing these findings with earlier research. Additionally, we assess and compare various open-source LLMs for their performance in sustaining role consistency during virtual client interactions. Our contributions include creating an adversarial dataset, evaluating conversation coherence and persona consistency, and providing a comparative analysis of different LLMs.
Abstract:In this work, we present our submission to the Speech Accessibility Project challenge for dysarthric speech recognition. We integrate parameter-efficient fine-tuning with latent audio representations to improve an encoder-decoder ASR system. Synthetic training data is generated by fine-tuning Parler-TTS to mimic dysarthric speech, using LLM-generated prompts for corpus-consistent target transcripts. Personalization with x-vectors consistently reduces word error rates (WERs) over non-personalized fine-tuning. AdaLoRA adapters outperform full fine-tuning and standard low-rank adaptation, achieving relative WER reductions of ~23% and ~22%, respectively. Further improvements (~5% WER reduction) come from incorporating wav2vec 2.0-based audio representations. Training with synthetic dysarthric speech yields up to ~7% relative WER improvement over personalized fine-tuning alone.