Music generation is the task of generating music or music-like sounds from a model or algorithm.
The FMCW radars are widely used for automotive radar systems. The basic idea for FMCW radars is to generate a linear frequency ramp as transmit signal. The difference frequency, (i.e., beat frequency) between the transmitted and received signal is determined after down conversion. The FFT operation on beat frequency signal can recognize targets at different range and velocity. Increasing demand on safety functionality leads to the Direction of Arrival (DOA) estimation to resolve two closely located targets. Consequently, the problem of angle estimation for 77GHz FMCW automotive radar simulated data has been investigated in this term project. In particular, we examined the performances of FFT, MUSIC and compressed sensing in angle estimation task, and it was found that although FFT is the fastest algorithm, it has very poor angular resolution when compared with others which are both super resolution algorithms. The code for this project report is available at https://github.com/ekurtgl/FMCW-MIMO-Radar-Simulation.




We present Text2midi-InferAlign, a novel technique for improving symbolic music generation at inference time. Our method leverages text-to-audio alignment and music structural alignment rewards during inference to encourage the generated music to be consistent with the input caption. Specifically, we introduce two objectives scores: a text-audio consistency score that measures rhythmic alignment between the generated music and the original text caption, and a harmonic consistency score that penalizes generated music containing notes inconsistent with the key. By optimizing these alignment-based objectives during the generation process, our model produces symbolic music that is more closely tied to the input captions, thereby improving the overall quality and coherence of the generated compositions. Our approach can extend any existing autoregressive model without requiring further training or fine-tuning. We evaluate our work on top of Text2midi - an existing text-to-midi generation model, demonstrating significant improvements in both objective and subjective evaluation metrics.




The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm.
Existing work in automatic music generation has primarily focused on end-to-end systems that produce complete compositions or continuations. However, because musical composition is typically an iterative process, such systems make it difficult to engage in the back-and-forth between human and machine that is essential to computer-assisted creativity. In this study, we address the task of personalizable, multi-track, long-context, and controllable symbolic music infilling to enhance the process of computer-assisted composition. We present MIDI-RWKV, a novel model based on the RWKV-7 linear architecture, to enable efficient and coherent musical cocreation on edge devices. We also demonstrate that MIDI-RWKV admits an effective method of finetuning its initial state for personalization in the very-low-sample regime. We evaluate MIDI-RWKV and its state tuning on several quantitative and qualitative metrics, and release model weights and code at https://github.com/christianazinn/MIDI-RWKV.




We present MGE-LDM, a unified latent diffusion framework for simultaneous music generation, source imputation, and query-driven source separation. Unlike prior approaches constrained to fixed instrument classes, MGE-LDM learns a joint distribution over full mixtures, submixtures, and individual stems within a single compact latent diffusion model. At inference, MGE-LDM enables (1) complete mixture generation, (2) partial generation (i.e., source imputation), and (3) text-conditioned extraction of arbitrary sources. By formulating both separation and imputation as conditional inpainting tasks in the latent space, our approach supports flexible, class-agnostic manipulation of arbitrary instrument sources. Notably, MGE-LDM can be trained jointly across heterogeneous multi-track datasets (e.g., Slakh2100, MUSDB18, MoisesDB) without relying on predefined instrument categories. Audio samples are available at our project page: https://yoongi43.github.io/MGELDM_Samples/.


Generating high-quality piano audio from video requires precise synchronization between visual cues and musical output, ensuring accurate semantic and temporal alignment.However, existing evaluation datasets do not fully capture the intricate synchronization required for piano music generation. A comprehensive benchmark is essential for two primary reasons: (1) existing metrics fail to reflect the complexity of video-to-piano music interactions, and (2) a dedicated benchmark dataset can provide valuable insights to accelerate progress in high-quality piano music generation. To address these challenges, we introduce the CoP Benchmark Dataset-a fully open-sourced, multimodal benchmark designed specifically for video-guided piano music generation. The proposed Chain-of-Perform (CoP) benchmark offers several compelling features: (1) detailed multimodal annotations, enabling precise semantic and temporal alignment between video content and piano audio via step-by-step Chain-of-Perform guidance; (2) a versatile evaluation framework for rigorous assessment of both general-purpose and specialized video-to-piano generation tasks; and (3) full open-sourcing of the dataset, annotations, and evaluation protocols. The dataset is publicly available at https://github.com/acappemin/Video-to-Audio-and-Piano, with a continuously updated leaderboard to promote ongoing research in this domain.
The accelerating pace of research on autoregressive generative models has produced thousands of papers, making manual literature surveys and reproduction studies increasingly impractical. We present a fully open-source, reproducible pipeline that automatically retrieves candidate documents from public repositories, filters them for relevance, extracts metadata, hyper-parameters and reported results, clusters topics, produces retrieval-augmented summaries and generates containerised scripts for re-running selected experiments. Quantitative evaluation on 50 manually-annotated papers shows F1 scores above 0.85 for relevance classification, hyper-parameter extraction and citation identification. Experiments on corpora of up to 1000 papers demonstrate near-linear scalability with eight CPU workers. Three case studies -- AWD-LSTM on WikiText-2, Transformer-XL on WikiText-103 and an autoregressive music model on the Lakh MIDI dataset -- confirm that the extracted settings support faithful reproduction, achieving test perplexities within 1--3% of the original reports.
Detailed captions that accurately reflect the characteristics of a music piece can enrich music databases and drive forward research in music AI. This paper introduces a multi-task music captioning model, SonicVerse, that integrates caption generation with auxiliary music feature detection tasks such as key detection, vocals detection, and more, so as to directly capture both low-level acoustic details as well as high-level musical attributes. The key contribution is a projection-based architecture that transforms audio input into language tokens, while simultaneously detecting music features through dedicated auxiliary heads. The outputs of these heads are also projected into language tokens, to enhance the captioning input. This framework not only produces rich, descriptive captions for short music fragments but also directly enables the generation of detailed time-informed descriptions for longer music pieces, by chaining the outputs using a large-language model. To train the model, we extended the MusicBench dataset by annotating it with music features using MIRFLEX, a modular music feature extractor, resulting in paired audio, captions and music feature data. Experimental results show that incorporating features in this way improves the quality and detail of the generated captions.
Jamming requires coordination, anticipation, and collaborative creativity between musicians. Current generative models of music produce expressive output but are not able to generate in an \emph{online} manner, meaning simultaneously with other musicians (human or otherwise). We propose ReaLchords, an online generative model for improvising chord accompaniment to user melody. We start with an online model pretrained by maximum likelihood, and use reinforcement learning to finetune the model for online use. The finetuning objective leverages both a novel reward model that provides feedback on both harmonic and temporal coherency between melody and chord, and a divergence term that implements a novel type of distillation from a teacher model that can see the future melody. Through quantitative experiments and listening tests, we demonstrate that the resulting model adapts well to unfamiliar input and produce fitting accompaniment. ReaLchords opens the door to live jamming, as well as simultaneous co-creation in other modalities.




Music-driven dance generation offers significant creative potential yet faces considerable challenges. The absence of fine-grained multimodal data and the difficulty of flexible multi-conditional generation limit previous works on generation controllability and diversity in practice. In this paper, we build OpenDance5D, an extensive human dance dataset comprising over 101 hours across 14 distinct genres. Each sample has five modalities to facilitate robust cross-modal learning: RGB video, audio, 2D keypoints, 3D motion, and fine-grained textual descriptions from human arts. Furthermore, we propose OpenDanceNet, a unified masked modeling framework for controllable dance generation conditioned on music and arbitrary combinations of text prompts, keypoints, or character positioning. Comprehensive experiments demonstrate that OpenDanceNet achieves high-fidelity and flexible controllability.