Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.




Facial expressions play a crucial role in human communication serving as a powerful and impactful means to express a wide range of emotions. With advancements in artificial intelligence and computer vision, deep neural networks have emerged as effective tools for facial emotion recognition. In this paper, we propose EmoNeXt, a novel deep learning framework for facial expression recognition based on an adapted ConvNeXt architecture network. We integrate a Spatial Transformer Network (STN) to focus on feature-rich regions of the face and Squeeze-and-Excitation blocks to capture channel-wise dependencies. Moreover, we introduce a self-attention regularization term, encouraging the model to generate compact feature vectors. We demonstrate the superiority of our model over existing state-of-the-art deep learning models on the FER2013 dataset regarding emotion classification accuracy.
Identity-preserving face synthesis aims to generate synthetic face images of virtual subjects that can substitute real-world data for training face recognition models. While prior arts strive to create images with consistent identities and diverse styles, they face a trade-off between them. Identifying their limitation of treating style variation as subject-agnostic and observing that real-world persons actually have distinct, subject-specific styles, this paper introduces MorphFace, a diffusion-based face generator. The generator learns fine-grained facial styles, e.g., shape, pose and expression, from the renderings of a 3D morphable model (3DMM). It also learns identities from an off-the-shelf recognition model. To create virtual faces, the generator is conditioned on novel identities of unlabeled synthetic faces, and novel styles that are statistically sampled from a real-world prior distribution. The sampling especially accounts for both intra-subject variation and subject distinctiveness. A context blending strategy is employed to enhance the generator's responsiveness to identity and style conditions. Extensive experiments show that MorphFace outperforms the best prior arts in face recognition efficacy.




The rapid aging of the global population has highlighted the need for technologies to support elderly, particularly in healthcare and emotional well-being. Facial expression recognition (FER) systems offer a non-invasive means of monitoring emotional states, with applications in assisted living, mental health support, and personalized care. This study presents a systematic review of deep learning-based FER systems, focusing on their applications for the elderly population. Following a rigorous methodology, we analyzed 31 studies published over the last decade, addressing challenges such as the scarcity of elderly-specific datasets, class imbalances, and the impact of age-related facial expression differences. Our findings show that convolutional neural networks remain dominant in FER, and especially lightweight versions for resource-constrained environments. However, existing datasets often lack diversity in age representation, and real-world deployment remains limited. Additionally, privacy concerns and the need for explainable artificial intelligence emerged as key barriers to adoption. This review underscores the importance of developing age-inclusive datasets, integrating multimodal solutions, and adopting XAI techniques to enhance system usability, reliability, and trustworthiness. We conclude by offering recommendations for future research to bridge the gap between academic progress and real-world implementation in elderly care.
The rapid growth of social media has led to the widespread sharing of individual portrait images, which pose serious privacy risks due to the capabilities of automatic face recognition (AFR) systems for mass surveillance. Hence, protecting facial privacy against unauthorized AFR systems is essential. Inspired by the generation capability of the emerging diffusion models, recent methods employ diffusion models to generate adversarial face images for privacy protection. However, they suffer from the diffusion purification effect, leading to a low protection success rate (PSR). In this paper, we first propose learning unconditional embeddings to increase the learning capacity for adversarial modifications and then use them to guide the modification of the adversarial latent code to weaken the diffusion purification effect. Moreover, we integrate an identity-preserving structure to maintain structural consistency between the original and generated images, allowing human observers to recognize the generated image as having the same identity as the original. Extensive experiments conducted on two public datasets, i.e., CelebA-HQ and LADN, demonstrate the superiority of our approach. The protected faces generated by our method outperform those produced by existing facial privacy protection approaches in terms of transferability and natural appearance.




Nonlinear sufficient dimension reduction\citep{libing_generalSDR}, which constructs nonlinear low-dimensional representations to summarize essential features of high-dimensional data, is an important branch of representation learning. However, most existing methods are not applicable when the response variables are complex non-Euclidean random objects, which are frequently encountered in many recent statistical applications. In this paper, we introduce a new statistical dependence measure termed Fr\'echet Cumulative Covariance (FCCov) and develop a novel nonlinear SDR framework based on FCCov. Our approach is not only applicable to complex non-Euclidean data, but also exhibits robustness against outliers. We further incorporate Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) to estimate nonlinear sufficient directions in the sample level. Theoretically, we prove that our method with squared Frobenius norm regularization achieves unbiasedness at the $\sigma$-field level. Furthermore, we establish non-asymptotic convergence rates for our estimators based on FNNs and ResNet-type CNNs, which match the minimax rate of nonparametric regression up to logarithmic factors. Intensive simulation studies verify the performance of our methods in both Euclidean and non-Euclidean settings. We apply our method to facial expression recognition datasets and the results underscore more realistic and broader applicability of our proposal.




The widespread adoption of facial recognition (FR) models raises serious concerns about their potential misuse, motivating the development of anti-facial recognition (AFR) to protect user facial privacy. In this paper, we argue that the static FR strategy, predominantly adopted in prior literature for evaluating AFR efficacy, cannot faithfully characterize the actual capabilities of determined trackers who aim to track a specific target identity. In particular, we introduce \emph{\ourAttack}, a dynamic FR strategy where the model's gallery database is iteratively updated with newly recognized target identity images. Surprisingly, such a simple approach renders all the existing AFR protections ineffective. To mitigate the privacy threats posed by DynTracker, we advocate for explicitly promoting diversity in the AFR-protected images. We hypothesize that the lack of diversity is the primary cause of the failure of existing AFR methods. Specifically, we develop \emph{DivTrackee}, a novel method for crafting diverse AFR protections that builds upon a text-guided image generation framework and diversity-promoting adversarial losses. Through comprehensive experiments on various facial image benchmarks and feature extractors, we demonstrate DynTracker's strength in breaking existing AFR methods and the superiority of DivTrackee in preventing user facial images from being identified by dynamic FR strategies. We believe our work can act as an important initial step towards developing more effective AFR methods for protecting user facial privacy against determined trackers.
Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.




Facial brightness is a key image quality factor impacting face recognition accuracy differentials across demographic groups. In this work, we aim to decrease the accuracy gap between the similarity score distributions for Caucasian and African American female mated image pairs, as measured by d' between distributions. To balance brightness across demographic groups, we conduct three experiments, interpreting brightness in the face skin region either as median pixel value or as the distribution of pixel values. Balancing based on median brightness alone yields up to a 46.8% decrease in d', while balancing based on brightness distribution yields up to a 57.6% decrease. In all three cases, the similarity scores of the individual distributions improve, with mean scores maximally improving 5.9% for Caucasian females and 3.7% for African American females.
Recent Customized Portrait Generation (CPG) methods, taking a facial image and a textual prompt as inputs, have attracted substantial attention. Although these methods generate high-fidelity portraits, they fail to prevent the generated portraits from being tracked and misused by malicious face recognition systems. To address this, this paper proposes a Customized Portrait Generation framework with facial Adversarial attacks (Adv-CPG). Specifically, to achieve facial privacy protection, we devise a lightweight local ID encryptor and an encryption enhancer. They implement progressive double-layer encryption protection by directly injecting the target identity and adding additional identity guidance, respectively. Furthermore, to accomplish fine-grained and personalized portrait generation, we develop a multi-modal image customizer capable of generating controlled fine-grained facial features. To the best of our knowledge, Adv-CPG is the first study that introduces facial adversarial attacks into CPG. Extensive experiments demonstrate the superiority of Adv-CPG, e.g., the average attack success rate of the proposed Adv-CPG is 28.1% and 2.86% higher compared to the SOTA noise-based attack methods and unconstrained attack methods, respectively.




Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.