Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.




In the rapidly evolving educational landscape, the unbiased assessment of soft skills is a significant challenge, particularly in higher education. This paper presents a fuzzy logic approach that employs a Granular Linguistic Model of Phenomena integrated with multimodal analysis to evaluate soft skills in undergraduate students. By leveraging computational perceptions, this approach enables a structured breakdown of complex soft skill expressions, capturing nuanced behaviours with high granularity and addressing their inherent uncertainties, thereby enhancing interpretability and reliability. Experiments were conducted with undergraduate students using a developed tool that assesses soft skills such as decision-making, communication, and creativity. This tool identifies and quantifies subtle aspects of human interaction, such as facial expressions and gesture recognition. The findings reveal that the framework effectively consolidates multiple data inputs to produce meaningful and consistent assessments of soft skills, showing that integrating multiple modalities into the evaluation process significantly improves the quality of soft skills scores, making the assessment work transparent and understandable to educational stakeholders.
Face recognition under extreme head poses is a challenging task. Ideally, a face recognition system should perform well across different head poses, which is known as pose-invariant face recognition. To achieve pose invariance, current approaches rely on sophisticated methods, such as face frontalization and various facial feature extraction model architectures. However, these methods are somewhat impractical in real-life settings and are typically evaluated on small scientific datasets, such as Multi-PIE. In this work, we propose the inverse method of face frontalization, called face defrontalization, to augment the training dataset of facial feature extraction model. The method does not introduce any time overhead during the inference step. The method is composed of: 1) training an adapted face defrontalization FFWM model on a frontal-profile pairs dataset, which has been preprocessed using our proposed face alignment method; 2) training a ResNet-50 facial feature extraction model based on ArcFace loss on a raw and randomly defrontalized large-scale dataset, where defrontalization was performed with our previously trained face defrontalization model. Our method was compared with the existing approaches on four open-access datasets: LFW, AgeDB, CFP, and Multi-PIE. Defrontalization shows improved results compared to models without defrontalization, while the proposed adjustments show clear superiority over the state-of-the-art face frontalization FFWM method on three larger open-access datasets, but not on the small Multi-PIE dataset for extreme poses (75 and 90 degrees). The results suggest that at least some of the current methods may be overfitted to small datasets.


Facial expression recognition is a challenging classification task with broad application prospects in the field of human - computer interaction. This paper aims to introduce the methods of our upcoming 8th Affective Behavior Analysis in the Wild (ABAW) competition to be held at CVPR2025. To address issues such as low recognition accuracy caused by subtle expression changes and multi - scales in facial expression recognition in videos, we propose global channel - spatial attention and median - enhanced spatial - channel attention to strengthen feature processing for speech and images respectively. Secondly, to fully utilize the complementarity between the speech and facial expression modalities, a speech - and - facial - expression key - frame alignment technique is adopted to calculate the weights of speech and facial expressions. These weights are input into the feature fusion layer for multi - scale dilated fusion, which effectively improves the recognition rate of facial expression recognition. In the facial expression recognition task of the 6th ABAW competition, our method achieved excellent results on the official validation set, which fully demonstrates the effectiveness and competitiveness of the proposed method.
We study whether and how the choice of optimization algorithm can impact group fairness in deep neural networks. Through stochastic differential equation analysis of optimization dynamics in an analytically tractable setup, we demonstrate that the choice of optimization algorithm indeed influences fairness outcomes, particularly under severe imbalance. Furthermore, we show that when comparing two categories of optimizers, adaptive methods and stochastic methods, RMSProp (from the adaptive category) has a higher likelihood of converging to fairer minima than SGD (from the stochastic category). Building on this insight, we derive two new theoretical guarantees showing that, under appropriate conditions, RMSProp exhibits fairer parameter updates and improved fairness in a single optimization step compared to SGD. We then validate these findings through extensive experiments on three publicly available datasets, namely CelebA, FairFace, and MS-COCO, across different tasks as facial expression recognition, gender classification, and multi-label classification, using various backbones. Considering multiple fairness definitions including equalized odds, equal opportunity, and demographic parity, adaptive optimizers like RMSProp and Adam consistently outperform SGD in terms of group fairness, while maintaining comparable predictive accuracy. Our results highlight the role of adaptive updates as a crucial yet overlooked mechanism for promoting fair outcomes.




This study investigates the key characteristics and suitability of widely used Facial Expression Recognition (FER) datasets for training deep learning models. In the field of affective computing, FER is essential for interpreting human emotions, yet the performance of FER systems is highly contingent on the quality and diversity of the underlying datasets. To address this issue, we compiled and analyzed 24 FER datasets, including those targeting specific age groups such as children, adults, and the elderly, and processed them through a comprehensive normalization pipeline. In addition, we enriched the datasets with automatic annotations for age and gender, enabling a more nuanced evaluation of their demographic properties. To further assess dataset efficacy, we introduce three novel metricsLocal, Global, and Paired Similarity, which quantitatively measure dataset difficulty, generalization capability, and cross-dataset transferability. Benchmark experiments using state-of-the-art neural networks reveal that large-scale, automatically collected datasets (e.g., AffectNet, FER2013) tend to generalize better, despite issues with labeling noise and demographic biases, whereas controlled datasets offer higher annotation quality but limited variability. Our findings provide actionable recommendations for dataset selection and design, advancing the development of more robust, fair, and effective FER systems.
Facial recognition systems rely on embeddings to represent facial images and determine identity by verifying if the distance between embeddings is below a pre-tuned threshold. While embeddings are not reversible to original images, they still contain sensitive information, making their security critical. Traditional encryption methods like AES are limited in securely utilizing cloud computational power for distance calculations. Homomorphic Encryption, allowing calculations on encrypted data, offers a robust alternative. This paper introduces CipherFace, a homomorphic encryption-driven framework for secure cloud-based facial recognition, which we have open-sourced at http://github.com/serengil/cipherface. By leveraging FHE, CipherFace ensures the privacy of embeddings while utilizing the cloud for efficient distance computation. Furthermore, we propose a novel encrypted distance computation method for both Euclidean and Cosine distances, addressing key challenges in performing secure similarity calculations on encrypted data. We also conducted experiments with different facial recognition models, various embedding sizes, and cryptosystem configurations, demonstrating the scalability and effectiveness of CipherFace in real-world applications.




The human face plays a central role in social communication, necessitating the use of performant computer vision tools for human-centered applications. We propose Face-LLaVA, a multimodal large language model for face-centered, in-context learning, including facial expression and attribute recognition. Additionally, Face-LLaVA is able to generate natural language descriptions that can be used for reasoning. Leveraging existing visual databases, we first developed FaceInstruct-1M, a face-centered database for instruction tuning MLLMs for face processing. We then developed a novel face-specific visual encoder powered by Face-Region Guided Cross-Attention that integrates face geometry with local visual features. We evaluated the proposed method across nine different datasets and five different face processing tasks, including facial expression recognition, action unit detection, facial attribute detection, age estimation and deepfake detection. Face-LLaVA achieves superior results compared to existing open-source MLLMs and competitive performance compared to commercial solutions. Our model output also receives a higher reasoning rating by GPT under a zero-shot setting across all the tasks. Both our dataset and model wil be released at https://face-llava.github.io to support future advancements in social AI and foundational vision-language research.
Micro-expressions (MEs) are subtle, fleeting nonverbal cues that reveal an individual's genuine emotional state. Their analysis has attracted considerable interest due to its promising applications in fields such as healthcare, criminal investigation, and human-computer interaction. However, existing ME research is limited to single visual modality, overlooking the rich emotional information conveyed by other physiological modalities, resulting in ME recognition and spotting performance far below practical application needs. Therefore, exploring the cross-modal association mechanism between ME visual features and physiological signals (PS), and developing a multimodal fusion framework, represents a pivotal step toward advancing ME analysis. This study introduces a novel ME dataset, MMME, which, for the first time, enables synchronized collection of facial action signals (MEs), central nervous system signals (EEG), and peripheral PS (PPG, RSP, SKT, EDA, and ECG). By overcoming the constraints of existing ME corpora, MMME comprises 634 MEs, 2,841 macro-expressions (MaEs), and 2,890 trials of synchronized multimodal PS, establishing a robust foundation for investigating ME neural mechanisms and conducting multimodal fusion-based analyses. Extensive experiments validate the dataset's reliability and provide benchmarks for ME analysis, demonstrating that integrating MEs with PS significantly enhances recognition and spotting performance. To the best of our knowledge, MMME is the most comprehensive ME dataset to date in terms of modality diversity. It provides critical data support for exploring the neural mechanisms of MEs and uncovering the visual-physiological synergistic effects, driving a paradigm shift in ME research from single-modality visual analysis to multimodal fusion. The dataset will be publicly available upon acceptance of this paper.




As artificial intelligence becomes more and more ingrained in daily life, we present a novel system that uses deep learning for music recommendation and emotion-based detection. Through the use of facial recognition and the DeepFace framework, our method analyses human emotions in real-time and then plays music that reflects the mood it has discovered. The system uses a webcam to take pictures, analyses the most common facial expression, and then pulls a playlist from local storage that corresponds to the mood it has detected. An engaging and customised experience is ensured by allowing users to manually change the song selection via a dropdown menu or navigation buttons. By continuously looping over the playlist, the technology guarantees continuity. The objective of our system is to improve emotional well-being through music therapy by offering a responsive and automated music-selection experience.
As facial recognition is increasingly adopted for government and commercial services, its potential misuse has raised serious concerns about privacy and civil rights. To counteract, various anti-facial recognition techniques have been proposed for privacy protection by adversarially perturbing face images, among which generative makeup-based approaches are the most popular. However, these methods, designed primarily to impersonate specific target identities, can only achieve weak dodging success rates while increasing the risk of targeted abuse. In addition, they often introduce global visual artifacts or a lack of adaptability to accommodate diverse makeup prompts, compromising user satisfaction. To address the above limitations, we develop MASQUE, a novel diffusion-based framework that generates localized adversarial makeups guided by user-defined text prompts. Built upon precise null-text inversion, customized cross-attention fusion with masking, and a pairwise adversarial guidance mechanism using images of the same individual, MASQUE achieves robust dodging performance without requiring any external identity. Comprehensive evaluations on open-source facial recognition models and commercial APIs demonstrate that MASQUE significantly improves dodging success rates over all baselines, along with higher perceptual fidelity and stronger adaptability to various text makeup prompts.