Stanford University
Abstract:Robust facial expression recognition in unconstrained, "in-the-wild" environments remains challenging due to significant domain shifts between training and testing distributions. Test-time adaptation (TTA) offers a promising solution by adapting pre-trained models during inference without requiring labeled test data. However, existing TTA approaches typically rely on manually selecting which parameters to update, potentially leading to suboptimal adaptation and high computational costs. This paper introduces a novel Fisher-driven selective adaptation framework that dynamically identifies and updates only the most critical model parameters based on their importance as quantified by Fisher information. By integrating this principled parameter selection approach with temporal consistency constraints, our method enables efficient and effective adaptation specifically tailored for video-based facial expression recognition. Experiments on the challenging AffWild2 benchmark demonstrate that our approach significantly outperforms existing TTA methods, achieving a 7.7% improvement in F1 score over the base model while adapting only 22,000 parameters-more than 20 times fewer than comparable methods. Our ablation studies further reveal that parameter importance can be effectively estimated from minimal data, with sampling just 1-3 frames sufficient for substantial performance gains. The proposed approach not only enhances recognition accuracy but also dramatically reduces computational overhead, making test-time adaptation more practical for real-world affective computing applications.
Abstract:Early detection of autism, a neurodevelopmental disorder marked by social communication challenges, is crucial for timely intervention. Recent advancements have utilized naturalistic home videos captured via the mobile application GuessWhat. Through interactive games played between children and their guardians, GuessWhat has amassed over 3,000 structured videos from 382 children, both diagnosed with and without Autism Spectrum Disorder (ASD). This collection provides a robust dataset for training computer vision models to detect ASD-related phenotypic markers, including variations in emotional expression, eye contact, and head movements. We have developed a protocol to curate high-quality videos from this dataset, forming a comprehensive training set. Utilizing this set, we trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%, respectively. To boost diagnostic accuracy, we applied late fusion techniques to create ensemble models, improving the overall AUC to 90%. This approach also yielded more equitable results across different genders and age groups. Our methodology offers a significant step forward in the early detection of ASD by potentially reducing the reliance on subjective assessments and making early identification more accessibly and equitable.