Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
While Large Language Models (LLMs) have revolutionized artificial intelligence, fine-tuning LLMs is extraordinarily computationally expensive, preventing smaller businesses and research teams with limited GPU resources from engaging with new research. Hu et al and Liu et al introduce Low-Rank Adaptation (LoRA) and Weight-Decomposed Low-Rank Adaptation (DoRA) as highly efficient and performant solutions to the computational challenges of LLM fine-tuning, demonstrating huge speedups and memory usage savings for models such as GPT-3 and RoBERTa. We seek to expand upon the original LoRA and DoRA papers by benchmarking efficiency and performance of LoRA and DoRA when applied to a much smaller scale of language model: our case study here is the compact minBERT model. Our findings reveal that optimal custom configurations of LoRA and DoRA, coupled with Automatic Mixed Precision (AMP), significantly enhance training efficiency without compromising performance. Furthermore, while the parameterization of minBERT is significantly smaller than GPT-3, our results validate the observation that gradient updates to language models are inherently low-rank even in small model space, observing that rank 1 decompositions yield negligible performance deficits. Furthermore, aided by our highly efficient minBERT implementation, we investigate numerous architectures, custom loss functions, and hyperparameters to ultimately train an optimal ensembled multitask minBERT model to simultaneously perform sentiment analysis, paraphrase detection, and similarity scoring.
In this paper, we introduce a novel Czech dataset for aspect-based sentiment analysis (ABSA), which consists of 3.1K manually annotated reviews from the restaurant domain. The dataset is built upon the older Czech dataset, which contained only separate labels for the basic ABSA tasks such as aspect term extraction or aspect polarity detection. Unlike its predecessor, our new dataset is specifically designed for more complex tasks, e.g. target-aspect-category detection. These advanced tasks require a unified annotation format, seamlessly linking sentiment elements (labels) together. Our dataset follows the format of the well-known SemEval-2016 datasets. This design choice allows effortless application and evaluation in cross-lingual scenarios, ultimately fostering cross-language comparisons with equivalent counterpart datasets in other languages. The annotation process engaged two trained annotators, yielding an impressive inter-annotator agreement rate of approximately 90%. Additionally, we provide 24M reviews without annotations suitable for unsupervised learning. We present robust monolingual baseline results achieved with various Transformer-based models and insightful error analysis to supplement our contributions. Our code and dataset are freely available for non-commercial research purposes.




Multimodal sentiment analysis (MSA) aims to understand human emotions by integrating information from multiple modalities, such as text, audio, and visual data. However, existing methods often suffer from spurious correlations both within and across modalities, leading models to rely on statistical shortcuts rather than true causal relationships, thereby undermining generalization. To mitigate this issue, we propose a Multi-relational Multimodal Causal Intervention (MMCI) model, which leverages the backdoor adjustment from causal theory to address the confounding effects of such shortcuts. Specifically, we first model the multimodal inputs as a multi-relational graph to explicitly capture intra- and inter-modal dependencies. Then, we apply an attention mechanism to separately estimate and disentangle the causal features and shortcut features corresponding to these intra- and inter-modal relations. Finally, by applying the backdoor adjustment, we stratify the shortcut features and dynamically combine them with the causal features to encourage MMCI to produce stable predictions under distribution shifts. Extensive experiments on several standard MSA datasets and out-of-distribution (OOD) test sets demonstrate that our method effectively suppresses biases and improves performance.
Multimodal Machine Learning (MML) aims to integrate and analyze information from diverse modalities, such as text, audio, and visuals, enabling machines to address complex tasks like sentiment analysis, emotion recognition, and multimedia retrieval. Recently, Arabic MML has reached a certain level of maturity in its foundational development, making it time to conduct a comprehensive survey. This paper explores Arabic MML by categorizing efforts through a novel taxonomy and analyzing existing research. Our taxonomy organizes these efforts into four key topics: datasets, applications, approaches, and challenges. By providing a structured overview, this survey offers insights into the current state of Arabic MML, highlighting areas that have not been investigated and critical research gaps. Researchers will be empowered to build upon the identified opportunities and address challenges to advance the field.
This study introduces KPoEM (Korean Poetry Emotion Mapping) , a novel dataset for computational emotion analysis in modern Korean poetry. Despite remarkable progress in text-based emotion classification using large language models, poetry-particularly Korean poetry-remains underexplored due to its figurative language and cultural specificity. We built a multi-label emotion dataset of 7,662 entries, including 7,007 line-level entries from 483 poems and 615 work-level entries, annotated with 44 fine-grained emotion categories from five influential Korean poets. A state-of-the-art Korean language model fine-tuned on this dataset significantly outperformed previous models, achieving 0.60 F1-micro compared to 0.34 from models trained on general corpora. The KPoEM model, trained through sequential fine-tuning-first on general corpora and then on the KPoEM dataset-demonstrates not only an enhanced ability to identify temporally and culturally specific emotional expressions, but also a strong capacity to preserve the core sentiments of modern Korean poetry. This study bridges computational methods and literary analysis, presenting new possibilities for the quantitative exploration of poetic emotions through structured data that faithfully retains the emotional and cultural nuances of Korean literature.
Subjective language understanding refers to a broad set of natural language processing tasks where the goal is to interpret or generate content that conveys personal feelings, opinions, or figurative meanings rather than objective facts. With the advent of large language models (LLMs) such as ChatGPT, LLaMA, and others, there has been a paradigm shift in how we approach these inherently nuanced tasks. In this survey, we provide a comprehensive review of recent advances in applying LLMs to subjective language tasks, including sentiment analysis, emotion recognition, sarcasm detection, humor understanding, stance detection, metaphor interpretation, intent detection, and aesthetics assessment. We begin by clarifying the definition of subjective language from linguistic and cognitive perspectives, and we outline the unique challenges posed by subjective language (e.g. ambiguity, figurativeness, context dependence). We then survey the evolution of LLM architectures and techniques that particularly benefit subjectivity tasks, highlighting why LLMs are well-suited to model subtle human-like judgments. For each of the eight tasks, we summarize task definitions, key datasets, state-of-the-art LLM-based methods, and remaining challenges. We provide comparative insights, discussing commonalities and differences among tasks and how multi-task LLM approaches might yield unified models of subjectivity. Finally, we identify open issues such as data limitations, model bias, and ethical considerations, and suggest future research directions. We hope this survey will serve as a valuable resource for researchers and practitioners interested in the intersection of affective computing, figurative language processing, and large-scale language models.
Sentiment analysis in low-resource, culturally nuanced contexts challenges conventional NLP approaches that assume fixed labels and universal affective expressions. We present a diagnostic framework that treats sentiment as a context-dependent, culturally embedded construct, and evaluate how large language models (LLMs) reason about sentiment in informal, code-mixed WhatsApp messages from Nairobi youth health groups. Using a combination of human-annotated data, sentiment-flipped counterfactuals, and rubric-based explanation evaluation, we probe LLM interpretability, robustness, and alignment with human reasoning. Framing our evaluation through a social-science measurement lens, we operationalize and interrogate LLMs outputs as an instrument for measuring the abstract concept of sentiment. Our findings reveal significant variation in model reasoning quality, with top-tier LLMs demonstrating interpretive stability, while open models often falter under ambiguity or sentiment shifts. This work highlights the need for culturally sensitive, reasoning-aware AI evaluation in complex, real-world communication.
In this study, we examine the Federal Reserve's communication strategies during the COVID-19 pandemic, comparing them with communication during previous periods of economic stress. Using specialized dictionaries tailored to COVID-19, unconventional monetary policy (UMP), and financial stability, combined with sentiment analysis and topic modeling techniques, we identify a distinct focus in Fed communication during the pandemic on financial stability, market volatility, social welfare, and UMP, characterized by notable contextual uncertainty. Through comparative analysis, we juxtapose the Fed's communication during the COVID-19 crisis with its responses during the dot-com and global financial crises, examining content, sentiment, and timing dimensions. Our findings reveal that Fed communication and policy actions were more reactive to the COVID-19 crisis than to previous crises. Additionally, declining sentiment related to financial stability in interest rate announcements and minutes anticipated subsequent accommodative monetary policy decisions. We further document that communicating about UMP has become the "new normal" for the Fed's Federal Open Market Committee meeting minutes and Chairman's speeches since the Global Financial Crisis, reflecting an institutional adaptation in communication strategy following periods of economic distress. These findings contribute to our understanding of how central bank communication evolves during crises and how communication strategies adapt to exceptional economic circumstances.
The surge in rich multimodal content on social media platforms has greatly advanced Multimodal Sentiment Analysis (MSA), with Large Language Models (LLMs) further accelerating progress in this field. Current approaches primarily leverage the knowledge and reasoning capabilities of parameter-heavy (Multimodal) LLMs for sentiment classification, overlooking autonomous multimodal sentiment reasoning generation in resource-constrained environments. Therefore, we focus on the Resource-Limited Joint Multimodal Sentiment Reasoning and Classification task, JMSRC, which simultaneously performs multimodal sentiment reasoning chain generation and sentiment classification only with a lightweight model. We propose a Multimodal Chain-of-Thought Reasoning Distillation model, MulCoT-RD, designed for JMSRC that employs a "Teacher-Assistant-Student" distillation paradigm to address deployment constraints in resource-limited environments. We first leverage a high-performance Multimodal Large Language Model (MLLM) to generate the initial reasoning dataset and train a medium-sized assistant model with a multi-task learning mechanism. A lightweight student model is jointly trained to perform efficient multimodal sentiment reasoning generation and classification. Extensive experiments on four datasets demonstrate that MulCoT-RD with only 3B parameters achieves strong performance on JMSRC, while exhibiting robust generalization and enhanced interpretability.
This research examines cross-lingual sentiment analysis using few-shot learning and incremental learning methods in Persian. The main objective is to develop a model capable of performing sentiment analysis in Persian using limited data, while getting prior knowledge from high-resource languages. To achieve this, three pre-trained multilingual models (XLM-RoBERTa, mDeBERTa, and DistilBERT) were employed, which were fine-tuned using few-shot and incremental learning approaches on small samples of Persian data from diverse sources, including X, Instagram, Digikala, Snappfood, and Taaghche. This variety enabled the models to learn from a broad range of contexts. Experimental results show that the mDeBERTa and XLM-RoBERTa achieved high performances, reaching 96% accuracy on Persian sentiment analysis. These findings highlight the effectiveness of combining few-shot learning and incremental learning with multilingual pre-trained models.