Abstract:ArkTS is a core programming language in the OpenHarmony ecosystem, yet research on ArkTS code intelligence is hindered by the lack of public datasets and evaluation benchmarks. This paper presents a large-scale ArkTS dataset constructed from open-source repositories, targeting code retrieval and code evaluation tasks. We design a single-search task, where natural language comments are used to retrieve corresponding ArkTS functions. ArkTS repositories are crawled from GitHub and Gitee, and comment-function pairs are extracted using tree-sitter-arkts, followed by cross-platform deduplication and statistical analysis of ArkTS function types. We further evaluate all existing open-source code embedding models on the single-search task and perform fine-tuning using both ArkTS and TypeScript training datasets, resulting in a high-performing model for ArkTS code understanding. This work establishes the first systematic benchmark for ArkTS code retrieval. Both the dataset and our fine-tuned model will be released publicly and are available at https://huggingface.co/hreyulog/embedinggemma_arkts and https://huggingface.co/datasets/hreyulog/arkts-code-docstring,establishing the first systematic benchmark for ArkTS code retrieval.
Abstract:Online social media platforms enable influencers to distribute content and quickly capture audience reactions, significantly shaping their promotional strategies and advertising agreements. Understanding how sentiment dynamics and emotional contagion unfold among followers is vital for influencers and marketers, as these processes shape engagement, brand perception, and purchasing behavior. While sentiment analysis tools effectively track sentiment fluctuations, dynamical models explaining their evolution remain limited, often neglecting network structures and interactions both among blogs and between their topic-focused follower groups. In this study, we tracked influential tech-focused Weibo bloggers over six months, quantifying follower sentiment from text-mined feedback. By treating each blogger's audience as a single "macro-agent", we find that sentiment trajectories follow the principle of iterative averaging -- a foundational mechanism in many dynamical models of opinion formation, a theoretical framework at the intersection of social network analysis and dynamical systems theory. The sentiment evolution aligns closely with opinion-dynamics models, particularly modified versions of the classical French-DeGroot model that incorporate delayed perception and distinguish between expressed and private opinions. The inferred influence structures reveal interdependencies among blogs that may arise from homophily, whereby emotionally similar users subscribe to the same blogs and collectively shape the shared sentiment expressed within these communities.