Abstract:This paper introduces PolyPersona, a generative framework for synthesizing persona-conditioned survey responses across multiple domains. The framework instruction-tunes compact chat models using parameter-efficient LoRA adapters with 4-bit quantization under a resource-adaptive training setup. A dialogue-based data pipeline explicitly preserves persona cues, ensuring consistent behavioral alignment across generated responses. Using this pipeline, we construct a dataset of 3,568 synthetic survey responses spanning ten domains and 433 distinct personas, enabling controlled instruction tuning and systematic multi-domain evaluation. We evaluate the generated responses using a multi-metric evaluation suite that combines standard text generation metrics, including BLEU, ROUGE, and BERTScore, with survey-specific metrics designed to assess structural coherence, stylistic consistency, and sentiment alignment.Experimental results show that compact models such as TinyLlama 1.1B and Phi-2 achieve performance comparable to larger 7B to 8B baselines, with a highest BLEU score of 0.090 and ROUGE-1 of 0.429. These findings demonstrate that persona-conditioned fine-tuning enables small language models to generate reliable and coherent synthetic survey data. The proposed framework provides an efficient and reproducible approach for survey data generation, supporting scalable evaluation while facilitating bias analysis through transparent and open protocols.
Abstract:This paper describes the full end-to-end design of our primary scoring agent in an aerial autonomous robotics competition from April 2023. As open-ended robotics competitions become more popular, we wish to begin documenting successful team designs and approaches. The intended audience of this paper is not only any future or potential participant in this particular national Defend The Republic (DTR) competition, but rather anyone thinking about designing their first robot or system to be entered in a competition with clear goals. Future DTR participants can and should either build on the ideas here, or find new alternate strategies that can defeat the most successful design last time. For non-DTR participants but students interested in robotics competitions, identifying the minimum viable system needed to be competitive is still important in helping manage time and prioritizing tasks that are crucial to competition success first.