Topic:Video Based Person Re Identification
What is Video Based Person Re Identification? Video-based person re-identification is the process of identifying and tracking individuals across multiple video sequences.
Papers and Code
Jun 04, 2025
Abstract:Person Re-Identification (Re-ID) is a very important task in video surveillance systems such as tracking people, finding people in public places, or analysing customer behavior in supermarkets. Although there have been many works to solve this problem, there are still remaining challenges such as large-scale datasets, imbalanced data, viewpoint, fine grained data (attributes), the Local Features are not employed at semantic level in online stage of Re-ID task, furthermore, the imbalanced data problem of attributes are not taken into consideration. This paper has proposed a Unified Re-ID system consisted of three main modules such as Pedestrian Attribute Ontology (PAO), Local Multi-task DCNN (Local MDCNN), Imbalance Data Solver (IDS). The new main point of our Re-ID system is the power of mutual support of PAO, Local MDCNN and IDS to exploit the inner-group correlations of attributes and pre-filter the mismatch candidates from Gallery set based on semantic information as Fashion Attributes and Facial Attributes, to solve the imbalanced data of attributes without adjusting network architecture and data augmentation. We experimented on the well-known Market1501 dataset. The experimental results have shown the effectiveness of our Re-ID system and it could achieve the higher performance on Market1501 dataset in comparison to some state-of-the-art Re-ID methods.
* International Journal of Advanced Computer Science and
Applications(IJACSA), 11(2), 2020
Via

May 28, 2025
Abstract:Video-based person re-identification (Re-ID) remains brittle in real-world deployments despite impressive benchmark performance. Most existing models rely on superficial correlations such as clothing, background, or lighting that fail to generalize across domains, viewpoints, and temporal variations. This survey examines the emerging role of causal reasoning as a principled alternative to traditional correlation-based approaches in video-based Re-ID. We provide a structured and critical analysis of methods that leverage structural causal models, interventions, and counterfactual reasoning to isolate identity-specific features from confounding factors. The survey is organized around a novel taxonomy of causal Re-ID methods that spans generative disentanglement, domain-invariant modeling, and causal transformers. We review current evaluation metrics and introduce causal-specific robustness measures. In addition, we assess practical challenges of scalability, fairness, interpretability, and privacy that must be addressed for real-world adoption. Finally, we identify open problems and outline future research directions that integrate causal modeling with efficient architectures and self-supervised learning. This survey aims to establish a coherent foundation for causal video-based person Re-ID and to catalyze the next phase of research in this rapidly evolving domain.
* 30 pages, 9 figures
Via

May 10, 2025
Abstract:Gait recognition, known for its ability to identify individuals from a distance, has gained significant attention in recent times due to its non-intrusive verification. While video-based gait identification systems perform well on large public datasets, their performance drops when applied to real-world, unconstrained gait data due to various factors. Among these, uncontrolled outdoor environments, non-overlapping camera views, varying illumination, and computational efficiency are core challenges in gait-based authentication. Currently, no dataset addresses all these challenges simultaneously. In this paper, we propose an OptiGait-LGBM model capable of recognizing person re-identification under these constraints using a skeletal model approach, which helps mitigate inconsistencies in a person's appearance. The model constructs a dataset from landmark positions, minimizing memory usage by using non-sequential data. A benchmark dataset, RUET-GAIT, is introduced to represent uncontrolled gait sequences in complex outdoor environments. The process involves extracting skeletal joint landmarks, generating numerical datasets, and developing an OptiGait-LGBM gait classification model. Our aim is to address the aforementioned challenges with minimal computational cost compared to existing methods. A comparative analysis with ensemble techniques such as Random Forest and CatBoost demonstrates that the proposed approach outperforms them in terms of accuracy, memory usage, and training time. This method provides a novel, low-cost, and memory-efficient video-based gait recognition solution for real-world scenarios.
* 12 pages, 17 figures
Via

May 01, 2025
Abstract:Practical applications of computer vision in smart cities usually assume system integration and operation in challenging open-world environments. In the case of person re-identification task the main goal is to retrieve information whether the specific person has appeared in another place at a different time instance of the same video, or over multiple camera feeds. This typically assumes collecting raw data from video surveillance cameras in different places and under varying illumination conditions. In the considered open-world setting it also requires detection and localization of the person inside the analyzed video frame before the main re-identification step. With multi-person and multi-camera setups the system complexity becomes higher, requiring sophisticated tracking solutions and re-identification models. In this work we will discuss existing challenges in system design architectures, consider possible solutions based on different computer vision techniques, and describe applications of such systems in retail stores and public spaces for improved marketing analytics. In order to analyse sensitivity of person re-identification task under different open-world environments, a performance of one close to real-time solution will be demonstrated over several video captures and live camera feeds. Finally, based on conducted experiments we will indicate further research directions and possible system improvements.
* 6 pages, 3 figures, 1 table, associated code implementation and
accompanying test videos with experimental results are available at the
following link: https://github.com/brkljac/personReID , paper submitted to
the 2nd International Scientific Conference 'ALFATECH - Smart Cities and
modern technologies - 2025', Belgrade, Serbia, Feb. 28, 2025
Via

Mar 11, 2025
Abstract:We introduce AG-VPReID, a challenging large-scale benchmark dataset for aerial-ground video-based person re-identification (ReID), comprising 6,632 identities, 32,321 tracklets, and 9.6 million frames captured from drones (15-120m altitude), CCTV, and wearable cameras. This dataset presents a real-world benchmark to investigate the robustness of Person ReID approaches against the unique challenges of cross-platform aerial-ground settings. To address these challenges, we propose AG-VPReID-Net, an end-to-end framework combining three complementary streams: (1) an Adapted Temporal-Spatial Stream addressing motion pattern inconsistencies and temporal feature learning, (2) a Normalized Appearance Stream using physics-informed techniques to tackle resolution and appearance changes, and (3) a Multi-Scale Attention Stream handling scale variations across drone altitudes. Our approach integrates complementary visual-semantic information from all streams to generate robust, viewpoint-invariant person representations. Extensive experiments demonstrate that AG-VPReID-Net outperforms state-of-the-art approaches on both our new dataset and other existing video-based ReID benchmarks, showcasing its effectiveness and generalizability. The relatively lower performance of all state-of-the-art approaches, including our proposed approach, on our new dataset highlights its challenging nature. The AG-VPReID dataset, code and models are available at https://github.com/agvpreid25/AG-VPReID-Net.
* Accepted at Computer Vision and Pattern Recognition Conference (CVPR)
2025
Via

Jan 28, 2025
Abstract:This paper proposes a new effective and efficient plug-and-play backbone for video-based person re-identification (ReID). Conventional video-based ReID methods typically use CNN or transformer backbones to extract deep features for every position in every sampled video frame. Here, we argue that this exhaustive feature extraction could be unnecessary, since we find that different frames in a ReID video often exhibit small differences and contain many similar regions due to the relatively slight movements of human beings. Inspired by this, a more selective, efficient paradigm is explored in this paper. Specifically, we introduce a patch selection mechanism to reduce computational cost by choosing only the crucial and non-repetitive patches for feature extraction. Additionally, we present a novel network structure that generates and utilizes pseudo frame global context to address the issue of incomplete views resulting from sparse inputs. By incorporating these new designs, our backbone can achieve both high performance and low computational cost. Extensive experiments on multiple datasets show that our approach reduces the computational cost by 74\% compared to ViT-B and 28\% compared to ResNet50, while the accuracy is on par with ViT-B and outperforms ResNet50 significantly.
* IEEE TIP
Via

Jan 13, 2025
Abstract:Video-based person re-identification (ReID) has become increasingly important due to its applications in video surveillance applications. By employing events in video-based person ReID, more motion information can be provided between continuous frames to improve recognition accuracy. Previous approaches have assisted by introducing event data into the video person ReID task, but they still cannot avoid the privacy leakage problem caused by RGB images. In order to avoid privacy attacks and to take advantage of the benefits of event data, we consider using only event data. To make full use of the information in the event stream, we propose a Cross-Modality and Temporal Collaboration (CMTC) network for event-based video person ReID. First, we design an event transform network to obtain corresponding auxiliary information from the input of raw events. Additionally, we propose a differential modality collaboration module to balance the roles of events and auxiliaries to achieve complementary effects. Furthermore, we introduce a temporal collaboration module to exploit motion information and appearance cues. Experimental results demonstrate that our method outperforms others in the task of event-based video person ReID.
* Accepted by ICASSP 2025
Via

Nov 17, 2024
Abstract:Video-based visible-infrared person re-identification (VVI-ReID) is challenging due to significant modality feature discrepancies. Spatial-temporal information in videos is crucial, but the accuracy of spatial-temporal information is often influenced by issues like low quality and occlusions in videos. Existing methods mainly focus on reducing modality differences, but pay limited attention to improving spatial-temporal features, particularly for infrared videos. To address this, we propose a novel Skeleton-guided spatial-Temporal feAture leaRning (STAR) method for VVI-ReID. By using skeleton information, which is robust to issues such as poor image quality and occlusions, STAR improves the accuracy of spatial-temporal features in videos of both modalities. Specifically, STAR employs two levels of skeleton-guided strategies: frame level and sequence level. At the frame level, the robust structured skeleton information is used to refine the visual features of individual frames. At the sequence level, we design a feature aggregation mechanism based on skeleton key points graph, which learns the contribution of different body parts to spatial-temporal features, further enhancing the accuracy of global features. Experiments on benchmark datasets demonstrate that STAR outperforms state-of-the-art methods. Code will be open source soon.
Via

Aug 14, 2024
Abstract:In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset.
Via

Jun 20, 2024
Abstract:With rich temporal-spatial information, video-based person re-identification methods have shown broad prospects. Although tracklets can be easily obtained with ready-made tracking models, annotating identities is still expensive and impractical. Therefore, some video-based methods propose using only a few identity annotations or camera labels to facilitate feature learning. They also simply average the frame features of each tracklet, overlooking unexpected variations and inherent identity consistency within tracklets. In this paper, we propose the Self-Supervised Refined Clustering (SSR-C) framework without relying on any annotation or auxiliary information to promote unsupervised video person re-identification. Specifically, we first propose the Noise-Filtered Tracklet Partition (NFTP) module to reduce the feature bias of tracklets caused by noisy tracking results, and sequentially partition the noise-filtered tracklets into "sub-tracklets". Then, we cluster and further merge sub-tracklets using the self-supervised signal from tracklet partition, which is enhanced through a progressive strategy to generate reliable pseudo labels, facilitating intra-class cross-tracklet aggregation. Moreover, we propose the Class Smoothing Classification (CSC) loss to efficiently promote model learning. Extensive experiments on the MARS and DukeMTMC-VideoReID datasets demonstrate that our proposed SSR-C for unsupervised video person re-identification achieves state-of-the-art results and is comparable to advanced supervised methods.
* The first two authors contributed equally
Via
