What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Feb 05, 2025
Abstract:We present LLaVAC, a method for constructing a classifier for multimodal sentiment analysis. This method leverages fine-tuning of the Large Language and Vision Assistant (LLaVA) to predict sentiment labels across both image and text modalities. Our approach involves designing a structured prompt that incorporates both unimodal and multimodal labels to fine-tune LLaVA, enabling it to perform sentiment classification effectively. Experiments on the MVSA-Single dataset demonstrate that LLaVAC outperforms existing methods in multimodal sentiment analysis across three data processing procedures. The implementation of LLaVAC is publicly available at https://github.com/tchayintr/llavac.
Via

Feb 04, 2025
Abstract:In response to Task II of the FinRL Challenge at ACM ICAIF 2024, this study proposes a novel prompt framework for fine-tuning large language models (LLM) with Reinforcement Learning from Market Feedback (RLMF). Our framework incorporates market-specific features and short-term price dynamics to generate more precise trading signals. Traditional LLMs, while competent in sentiment analysis, lack contextual alignment for financial market applications. To bridge this gap, we fine-tune the LLaMA-3.2-3B-Instruct model using a custom RLMF prompt design that integrates historical market data and reward-based feedback. Our evaluation shows that this RLMF-tuned framework outperforms baseline methods in signal consistency and achieving tighter trading outcomes; awarded as winner of Task II. You can find the code for this project on GitHub.
* Competition Track FinRL, ICAIF 2024
Via

Feb 03, 2025
Abstract:In the era of pervasive internet use and the dominance of social networks, researchers face significant challenges in Persian text mining including the scarcity of adequate datasets in Persian and the inefficiency of existing language models. This paper specifically tackles these challenges, aiming to amplify the efficiency of language models tailored to the Persian language. Focusing on enhancing the effectiveness of sentiment analysis, our approach employs an aspect-based methodology utilizing the ParsBERT model, augmented with a relevant lexicon. The study centers on sentiment analysis of user opinions extracted from the Persian website 'Digikala.' The experimental results not only highlight the proposed method's superior semantic capabilities but also showcase its efficiency gains with an accuracy of 88.2% and an F1 score of 61.7. The importance of enhancing language models in this context lies in their pivotal role in extracting nuanced sentiments from user-generated content, ultimately advancing the field of sentiment analysis in Persian text mining by increasing efficiency and accuracy.
* Journal of AI and Data Mining, 2024, 12(1): 1-14
Via

Feb 04, 2025
Abstract:The Aspect Sentiment Triplet Extraction (ASTE) task aims to extract aspect terms, opinion terms, and their corresponding sentiment polarity from a given sentence. It remains one of the most prominent subtasks in fine-grained sentiment analysis. Most existing approaches frame triplet extraction as a 2D table-filling process in an end-to-end manner, focusing primarily on word-level interactions while often overlooking sentence-level representations. This limitation hampers the model's ability to capture global contextual information, particularly when dealing with multi-word aspect and opinion terms in complex sentences. To address these issues, we propose boundary-driven table-filling with cross-granularity contrastive learning (BTF-CCL) to enhance the semantic consistency between sentence-level representations and word-level representations. By constructing positive and negative sample pairs, the model is forced to learn the associations at both the sentence level and the word level. Additionally, a multi-scale, multi-granularity convolutional method is proposed to capture rich semantic information better. Our approach can capture sentence-level contextual information more effectively while maintaining sensitivity to local details. Experimental results show that the proposed method achieves state-of-the-art performance on public benchmarks according to the F1 score.
* Accepted to ICASSP 2025
Via

Feb 03, 2025
Abstract:In an era dominated by datafication, the reduction of human experiences to quantifiable metrics raises profound philosophical and ethical questions. This paper explores these issues through the lens of Meursault, the protagonist of Albert Camus' The Stranger, whose emotionally detached existence epitomizes the existential concept of absurdity. Using natural language processing (NLP) techniques including emotion detection (BERT), sentiment analysis (VADER), and named entity recognition (spaCy)-this study quantifies key events and behaviors in Meursault's life. Our analysis reveals the inherent limitations of applying algorithmic models to complex human experiences, particularly those rooted in existential alienation and moral ambiguity. By examining how modern AI tools misinterpret Meursault's actions and emotions, this research underscores the broader ethical dilemmas of reducing nuanced human narratives to data points, challenging the foundational assumptions of our data-driven society. The findings presented in this paper serve as a critique of the increasing reliance on data-driven narratives and advocate for incorporating humanistic values in artificial intelligence.
* 7 pages, 9 figures, 4 tables
Via

Feb 04, 2025
Abstract:This study attempts to advancing content analysis methodology from consensus-oriented to coordination-oriented practices, thereby embracing diverse coding outputs and exploring the dynamics among differential perspectives. As an exploratory investigation of this approach, we evaluate six GPT-4o configurations to analyze sentiment in Fox News and MSNBC transcripts on Biden and Trump during the 2020 U.S. presidential campaign, examining patterns across these models. By assessing each model's alignment with ideological perspectives, we explore how partisan selective processing could be identified in LLM-Assisted Content Analysis (LACA). Findings reveal that partisan persona LLMs exhibit stronger ideological biases when processing politically congruent content. Additionally, intercoder reliability is higher among same-partisan personas compared to cross-partisan pairs. This approach enhances the nuanced understanding of LLM outputs and advances the integrity of AI-driven social science research, enabling simulations of real-world implications.
Via

Feb 03, 2025
Abstract:Cass Sunstein's essay 'On Bob Dylan' describes Dylan's 'dishabituating' style -- a constant refusal to conform to expectation and a penchant for reinventing his musical and lyrical identity. In this paper, I extend Sunstein's observations through a large-scale computational analysis of Dylan's lyrics from 1962 to 2012. Using o3-mini-high (a large language model), I extract concept-to-concept relationships from the lyrics and construct directed knowledge graphs that capture Dylan's thematic structure. I then quantify shifts in sentiment, metaphorical expression, thematic diversity, and network complexity over time. The results indicate that Dylan's lyrics increasingly rely on metaphor, display an evolving sentiment profile, and exhibit heightened dishabituation -- measured here as a growing variance in the network centrality of key concepts. I also find that references to movement, protest, and mythic imagery fluctuate in ways that align with well-known phases of Dylan's career, reflecting the dynamic and unpredictable quality of his art. These findings not only deepen our empirical understanding of Sunstein's thesis but also introduce a novel computational method for analyzing an artist's evolution-offering broader applicability to the study of cultural and creative change.
Via

Jan 31, 2025
Abstract:Sentiment analysis of patient feedback from the public health domain can aid decision makers in evaluating the provided services. The current paper focuses on free-text comments in patient surveys about general practitioners and psychiatric healthcare, annotated with four sentence-level polarity classes -- positive, negative, mixed and neutral -- while also attempting to alleviate data scarcity by leveraging general-domain sources in the form of reviews. For several different architectures, we compare in-domain and out-of-domain effects, as well as the effects of training joint multi-domain models.
* Accepted for NoDaLiDa / Baltic-HLT 2025
Via

Jan 31, 2025
Abstract:The Tsetlin Machine (TM) architecture has recently demonstrated effectiveness in Machine Learning (ML), particularly within Natural Language Processing (NLP). It has been utilized to construct word embedding using conjunctive propositional clauses, thereby significantly enhancing our understanding and interpretation of machine-derived decisions. The previous approach performed the word embedding over a sequence of input words to consolidate the information into a cohesive and unified representation. However, that approach encounters scalability challenges as the input size increases. In this study, we introduce a novel approach incorporating two-phase training to discover contextual embeddings of input sequences. Specifically, this method encapsulates the knowledge for each input word within the dataset's vocabulary, subsequently constructing embeddings for a sequence of input words utilizing the extracted knowledge. This technique not only facilitates the design of a scalable model but also preserves interpretability. Our experimental findings revealed that the proposed method yields competitive performance compared to the previous approaches, demonstrating promising results in contrast to human-generated benchmarks. Furthermore, we applied the proposed approach to sentiment analysis on the IMDB dataset, where the TM embedding and the TM classifier, along with other interpretable classifiers, offered a transparent end-to-end solution with competitive performance.
Via

Jan 29, 2025
Abstract:Accurate sentiment analysis of texts is crucial for a variety of applications, such as understanding customer feedback, monitoring market trends, and detecting public sentiment. However, manually annotating large sentiment corpora for supervised learning is labor-intensive and time-consuming. Therefore, it is essential and effective to develop a semi-supervised method for the sentiment analysis task. Although some methods have been proposed for semi-supervised text classification, they rely on the intrinsic information within the unlabeled data and the learning capability of the NLP model, which lack generalization ability to the sentiment analysis scenario and may prone to overfit. Inspired by the ability of pretrained Large Language Models (LLMs) in following instructions and generating coherent text, we propose a Semantic Consistency Regularization with Large Language Models (SCR) framework for semi-supervised sentiment analysis. We introduce two prompting strategies to semantically enhance unlabeled text using LLMs. The first is Entity-based Enhancement (SCR-EE), which involves extracting entities and numerical information, and querying the LLM to reconstruct the textual information. The second is Concept-based Enhancement (SCR-CE), which directly queries the LLM with the original sentence for semantic reconstruction. Subsequently, the LLM-augmented data is utilized for a consistency loss with confidence thresholding, which preserves high-quality agreement samples to provide additional supervision signals during training. Furthermore, to fully utilize the uncertain unlabeled data samples, we propose a class re-assembling strategy inspired by the class space shrinking theorem. Experiments show our method achieves remarkable performance over prior semi-supervised methods.
* ICONIP 2024
Via
