What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Apr 16, 2025
Abstract:Multimodal Sentiment Analysis (MSA) faces two critical challenges: the lack of interpretability in the decision logic of multimodal fusion and modality imbalance caused by disparities in inter-modal information density. To address these issues, we propose KAN-MCP, a novel framework that integrates the interpretability of Kolmogorov-Arnold Networks (KAN) with the robustness of the Multimodal Clean Pareto (MCPareto) framework. First, KAN leverages its univariate function decomposition to achieve transparent analysis of cross-modal interactions. This structural design allows direct inspection of feature transformations without relying on external interpretation tools, thereby ensuring both high expressiveness and interpretability. Second, the proposed MCPareto enhances robustness by addressing modality imbalance and noise interference. Specifically, we introduce the Dimensionality Reduction and Denoising Modal Information Bottleneck (DRD-MIB) method, which jointly denoises and reduces feature dimensionality. This approach provides KAN with discriminative low-dimensional inputs to reduce the modeling complexity of KAN while preserving critical sentiment-related information. Furthermore, MCPareto dynamically balances gradient contributions across modalities using the purified features output by DRD-MIB, ensuring lossless transmission of auxiliary signals and effectively alleviating modality imbalance. This synergy of interpretability and robustness not only achieves superior performance on benchmark datasets such as CMU-MOSI, CMU-MOSEI, and CH-SIMS v2 but also offers an intuitive visualization interface through KAN's interpretable architecture.
Via

Apr 16, 2025
Abstract:This study explores the dynamic landscape of Technical Debt (TD) topics in software engineering by examining its evolution across time, programming languages, and repositories. Despite the extensive research on identifying and quantifying TD, there remains a significant gap in understanding the diversity of TD topics and their temporal development. To address this, we have conducted an explorative analysis of TD data extracted from GitHub issues spanning from 2015 to September 2023. We employed BERTopic for sophisticated topic modelling. This study categorises the TD topics and tracks their progression over time. Furthermore, we have incorporated sentiment analysis for each identified topic, providing a deeper insight into the perceptions and attitudes associated with these topics. This offers a more nuanced understanding of the trends and shifts in TD topics through time, programming language, and repository.
Via

Apr 16, 2025
Abstract:One fundamental question for the social sciences today is: how much can we trust highly complex predictive models like ChatGPT? This study tests the hypothesis that subtle changes in the structure of prompts do not produce significant variations in the classification results of sentiment polarity analysis generated by the Large Language Model GPT-4o mini. Using a dataset of 100.000 comments in Spanish on four Latin American presidents, the model classified the comments as positive, negative, or neutral on 10 occasions, varying the prompts slightly each time. The experimental methodology included exploratory and confirmatory analyses to identify significant discrepancies among classifications. The results reveal that even minor modifications to prompts such as lexical, syntactic, or modal changes, or even their lack of structure impact the classifications. In certain cases, the model produced inconsistent responses, such as mixing categories, providing unsolicited explanations, or using languages other than Spanish. Statistical analysis using Chi-square tests confirmed significant differences in most comparisons between prompts, except in one case where linguistic structures were highly similar. These findings challenge the robustness and trust of Large Language Models for classification tasks, highlighting their vulnerability to variations in instructions. Moreover, it was evident that the lack of structured grammar in prompts increases the frequency of hallucinations. The discussion underscores that trust in Large Language Models is based not only on technical performance but also on the social and institutional relationships underpinning their use.
* in Spanish language
Via

Apr 15, 2025
Abstract:Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+3.1\% F1 and +5.4\% precision on Twitter2015).
* submitted to ACM MM2025
Via

Apr 15, 2025
Abstract:While multimodal fusion has been extensively studied in Multimodal Sentiment Analysis (MSA), the role of fusion depth and multimodal capacity allocation remains underexplored. In this work, we position fusion depth, scalability, and dedicated multimodal capacity as primary factors for effective fusion. We introduce DeepMLF, a novel multimodal language model (LM) with learnable tokens tailored toward deep fusion. DeepMLF leverages an audiovisual encoder and a pretrained decoder LM augmented with multimodal information across its layers. We append learnable tokens to the LM that: 1) capture modality interactions in a controlled fashion and 2) preserve independent information flow for each modality. These fusion tokens gather linguistic information via causal self-attention in LM Blocks and integrate with audiovisual information through cross-attention MM Blocks. Serving as dedicated multimodal capacity, this design enables progressive fusion across multiple layers, providing depth in the fusion process. Our training recipe combines modality-specific losses and language modelling loss, with the decoder LM tasked to predict ground truth polarity. Across three MSA benchmarks with varying dataset characteristics, DeepMLF achieves state-of-the-art performance. Our results confirm that deeper fusion leads to better performance, with optimal fusion depths (5-7) exceeding those of existing approaches. Additionally, our analysis on the number of fusion tokens reveals that small token sets ($\sim$20) achieve optimal performance. We examine the importance of representation learning order (fusion curriculum) through audiovisual encoder initialization experiments. Our ablation studies demonstrate the superiority of the proposed fusion design and gating while providing a holistic examination of DeepMLF's scalability to LLMs, and the impact of each training objective and embedding regularization.
* Preprint
Via

Apr 14, 2025
Abstract:Sentiment analysis is a crucial task in natural language processing (NLP) that enables the extraction of meaningful insights from textual data, particularly from dynamic platforms like Twitter and IMDB. This study explores a hybrid framework combining transformer-based models, specifically BERT, GPT-2, RoBERTa, XLNet, and DistilBERT, to improve sentiment classification accuracy and robustness. The framework addresses challenges such as noisy data, contextual ambiguity, and generalization across diverse datasets by leveraging the unique strengths of these models. BERT captures bidirectional context, GPT-2 enhances generative capabilities, RoBERTa optimizes contextual understanding with larger corpora and dynamic masking, XLNet models dependency through permutation-based learning, and DistilBERT offers efficiency with reduced computational overhead while maintaining high accuracy. We demonstrate text cleaning, tokenization, and feature extraction using Term Frequency Inverse Document Frequency (TF-IDF) and Bag of Words (BoW), ensure high-quality input data for the models. The hybrid approach was evaluated on benchmark datasets Sentiment140 and IMDB, achieving superior accuracy rates of 94\% and 95\%, respectively, outperforming standalone models. The results validate the effectiveness of combining multiple transformer models in ensemble-like setups to address the limitations of individual architectures. This research highlights its applicability to real-world tasks such as social media monitoring, customer sentiment analysis, and public opinion tracking which offers a pathway for future advancements in hybrid NLP frameworks.
* 41 pages, 12 figures, includes algorithm and comparative tables
Via

Apr 14, 2025
Abstract:In contemporary society, widespread social media usage is evident in people's daily lives. Nevertheless, disparities in emotional expressions between the real world and online platforms can manifest. We comprehensively analyzed Persian community on X to explore this phenomenon. An innovative pipeline was designed to measure the similarity between emotions in the real world compared to social media. Accordingly, recent tweets and images of participants were gathered and analyzed using Transformers-based text and image sentiment analysis modules. Each participant's friends also provided insights into the their real-world emotions. A distance criterion was used to compare real-world feelings with virtual experiences. Our study encompassed N=105 participants, 393 friends who contributed their perspectives, over 8,300 collected tweets, and 2,000 media images. Results indicated a 28.67% similarity between images and real-world emotions, while tweets exhibited a 75.88% alignment with real-world feelings. Additionally, the statistical significance confirmed that the observed disparities in sentiment proportions.
Via

Apr 11, 2025
Abstract:As the popularity and reach of social networks continue to surge, a vast reservoir of opinions and sentiments across various subjects inundates these platforms. Among these, X social network (formerly Twitter) stands as a juggernaut, boasting approximately 420 million active users. Extracting users' emotional and mental states from their expressed opinions on social media has become a common pursuit. While past methodologies predominantly focused on the textual content of messages to analyze user sentiment, the interactive nature of these platforms suggests a deeper complexity. This study employs hybrid methodologies, integrating textual analysis, profile examination, follower analysis, and emotion dissemination patterns. Initially, user interactions are leveraged to refine emotion classification within messages, encompassing exchanges where users respond to each other. Introducing the concept of a communication tree, a model is extracted to map these interactions. Subsequently, users' bios and interests from this tree are juxtaposed with message text to enrich analysis. Finally, influential figures are identified among users' followers in the communication tree, categorized into different topics to gauge interests. The study highlights that traditional sentiment analysis methodologies, focusing solely on textual content, are inadequate in discerning sentiment towards significant events, notably the presidential election. Comparative analysis with conventional methods reveals a substantial improvement in accuracy with the incorporation of emotion distribution patterns and user profiles. The proposed approach yields a 12% increase in accuracy with emotion distribution patterns and a 15% increase when considering user profiles, underscoring its efficacy in capturing nuanced sentiment dynamics.
Via

Apr 08, 2025
Abstract:Large Language Models (LLMs) have demonstrated impressive performance across various tasks, including sentiment analysis. However, data quality--particularly when sourced from social media--can significantly impact their accuracy. This research explores how textual nuances, including emojis and sarcasm, affect sentiment analysis, with a particular focus on improving data quality through text paraphrasing techniques. To address the lack of labeled sarcasm data, the authors created a human-labeled dataset of 5929 tweets that enabled the assessment of LLM in various sarcasm contexts. The results show that when topic-specific datasets, such as those related to nuclear power, are used to finetune LLMs these models are not able to comprehend accurate sentiment in presence of sarcasm due to less diverse text, requiring external interventions like sarcasm removal to boost model accuracy. Sarcasm removal led to up to 21% improvement in sentiment accuracy, as LLMs trained on nuclear power-related content struggled with sarcastic tweets, achieving only 30% accuracy. In contrast, LLMs trained on general tweet datasets, covering a broader range of topics, showed considerable improvements in predicting sentiment for sarcastic tweets (60% accuracy), indicating that incorporating general text data can enhance sarcasm detection. The study also utilized adversarial text augmentation, showing that creating synthetic text variants by making minor changes significantly increased model robustness and accuracy for sarcastic tweets (approximately 85%). Additionally, text paraphrasing of tweets with fragmented language transformed around 40% of the tweets with low-confidence labels into high-confidence ones, improving LLMs sentiment analysis accuracy by 6%.
* 21 pages, 10 Tables, 5 figures
Via

Apr 09, 2025
Abstract:Recent advances in language modeling have led to growing interest in applying Natural Language Processing (NLP) techniques to financial problems, enabling new approaches to analysis and decision-making. To systematically examine this trend, we review 374 NLP research papers published between 2017 and 2024 across 38 conferences and workshops, with a focused analysis of 221 papers that directly address finance-related tasks. We evaluate these papers across 11 qualitative and quantitative dimensions, identifying key trends such as the increasing use of general-purpose language models, steady progress in sentiment analysis and information extraction, and emerging efforts around explainability and privacy-preserving methods. We also discuss the use of evaluation metrics, highlighting the importance of domain-specific ones to complement standard machine learning metrics. Our findings emphasize the need for more accessible, adaptive datasets and highlight the significance of incorporating financial crisis periods to strengthen model robustness under real-world conditions. This survey provides a structured overview of NLP research applied to finance and offers practical insights for researchers and practitioners working at this intersection.
Via
