The effectiveness of a model is heavily reliant on the quality of the fusion representation of multiple modalities in multimodal sentiment analysis. Moreover, each modality is extracted from raw input and integrated with the rest to construct a multimodal representation. Although previous methods have proposed multimodal representations and achieved promising results, most of them focus on forming positive and negative pairs, neglecting the variation in sentiment scores within the same class. Additionally, they fail to capture the significance of unimodal representations in the fusion vector. To address these limitations, we introduce a framework called Supervised Angular-based Contrastive Learning for Multimodal Sentiment Analysis. This framework aims to enhance discrimination and generalizability of the multimodal representation and overcome biases in the fusion vector's modality. Our experimental results, along with visualizations on two widely used datasets, demonstrate the effectiveness of our approach.
Aspect-based Sentiment Analysis (ABSA) is a type of fine-grained sentiment analysis (SA) that identifies aspects and the associated opinions from a given text. In the digital era, ABSA gained increasing popularity and applications in mining opinionated text data to obtain insights and support decisions. ABSA research employs linguistic, statistical, and machine-learning approaches and utilises resources such as labelled datasets, aspect and sentiment lexicons and ontology. By its nature, ABSA is domain-dependent and can be sensitive to the impact of misalignment between the resource and application domains. However, to our knowledge, this topic has not been explored by the existing ABSA literature reviews. In this paper, we present a Systematic Literature Review (SLR) of ABSA studies with a focus on the research application domain, dataset domain, and the research methods to examine their relationships and identify trends over time. Our results suggest a number of potential systemic issues in the ABSA research literature, including the predominance of the ``product/service review'' dataset domain among the majority of studies that did not have a specific research application domain, coupled with the prevalence of dataset-reliant methods such as supervised machine learning. This review makes a number of unique contributions to the ABSA research field: 1) To our knowledge, it is the first SLR that links the research domain, dataset domain, and research method through a systematic perspective; 2) it is one of the largest scoped SLR on ABSA, with 519 eligible studies filtered from 4191 search results without time constraint; and 3) our review methodology adopted an innovative automatic filtering process based on PDF-mining, which enhanced screening quality and reliability. Suggestions and our review limitations are also discussed.
Artificial intelligence and machine learning have significantly bolstered the technological world. This paper explores the potential of transfer learning in natural language processing focusing mainly on sentiment analysis. The models trained on the big data can also be used where data are scarce. The claim is that, compared to training models from scratch, transfer learning, using pre-trained BERT models, can increase sentiment classification accuracy. The study adopts a sophisticated experimental design that uses the IMDb dataset of sentimentally labelled movie reviews. Pre-processing includes tokenization and encoding of text data, making it suitable for NLP models. The dataset is used on a BERT based model, measuring its performance using accuracy. The result comes out to be 100 per cent accurate. Although the complete accuracy could appear impressive, it might be the result of overfitting or a lack of generalization. Further analysis is required to ensure the model's ability to handle diverse and unseen data. The findings underscore the effectiveness of transfer learning in NLP, showcasing its potential to excel in sentiment analysis tasks. However, the research calls for a cautious interpretation of perfect accuracy and emphasizes the need for additional measures to validate the model's generalization.
Sentiment analysis (SA) is an emerging field in text mining. It is the process of computationally identifying and categorizing opinions expressed in a piece of text over different social media platforms. Social media plays an essential role in knowing the customer mindset towards a product, services, and the latest market trends. Most organizations depend on the customer's response and feedback to upgrade their offered products and services. SA or opinion mining seems to be a promising research area for various domains. It plays a vital role in analyzing big data generated daily in structured and unstructured formats over the internet. This survey paper defines sentiment and its recent research and development in different domains, including voice, images, videos, and text. The challenges and opportunities of sentiment analysis are also discussed in the paper. \keywords{Sentiment Analysis, Machine Learning, Lexicon-based approach, Deep Learning, Natural Language Processing}
When dealing with text data containing subjective labels like speaker emotions, inaccuracies or discrepancies among labelers are not uncommon. Such discrepancies can significantly affect the performance of machine learning algorithms. This study investigates the potential of identifying and addressing outliers in text data with subjective labels, aiming to enhance classification outcomes. We utilized the Deep SVDD algorithm, a one-class classification method, to detect outliers in nine text-based emotion and sentiment analysis datasets. By employing both a small-sized language model (DistilBERT base model with 66 million parameters) and non-deep learning machine learning algorithms (decision tree, KNN, Logistic Regression, and LDA) as the classifier, our findings suggest that the removal of outliers can lead to enhanced results in most cases. Additionally, as outliers in such datasets are not necessarily unlearnable, we experienced utilizing a large language model -- DeBERTa v3 large with 131 million parameters, which can capture very complex patterns in data. We continued to observe performance enhancements across multiple datasets.
Text mining research has grown in importance in recent years due to the tremendous increase in the volume of unstructured textual data. This has resulted in immense potential as well as obstacles in the sector, which may be efficiently addressed with adequate analytical and study methods. Deep Bidirectional Recurrent Neural Networks are used in this study to analyze sentiment. The method is categorized as sentiment polarity analysis because it may generate a dataset with sentiment labels. This dataset can be used to train and evaluate sentiment analysis models capable of extracting impartial opinions. This paper describes the Sentiment Analysis-Deep Bidirectional Recurrent Neural Networks (SA-BDRNN) Scheme, which seeks to overcome the challenges and maximize the potential of text mining in the context of Big Data. The current study proposes a SA-DBRNN Scheme that attempts to give a systematic framework for sentiment analysis in the context of student input on institution choice. The purpose of this study is to compare the effectiveness of the proposed SA- DBRNN Scheme to existing frameworks to establish a robust deep neural network that might serve as an adequate classification model in the field of sentiment analysis.
Product reviews often contain a large number of implicit aspects and object-attribute co-existence cases. Unfortunately, many existing studies in Aspect-Based Sentiment Analysis (ABSA) have overlooked this issue, which can make it difficult to extract opinions comprehensively and fairly. In this paper, we propose a new task called Entity-Aspect-Opinion-Sentiment Quadruple Extraction (EASQE), which aims to hierarchically decompose aspect terms into entities and aspects to avoid information loss, non-exclusive annotations, and opinion misunderstandings in ABSA tasks. To facilitate research in this new task, we have constructed four datasets (Res14-EASQE, Res15-EASQE, Res16-EASQE, and Lap14-EASQE) based on the SemEval Restaurant and Laptop datasets. We have also proposed a novel two-stage sequence-tagging based Trigger-Opinion framework as the baseline for the EASQE task. Empirical evaluations show that our Trigger-Opinion framework can generate satisfactory EASQE results and can also be applied to other ABSA tasks, significantly outperforming state-of-the-art methods. We have made the four datasets and source code of Trigger-Opinion publicly available to facilitate further research in this area.
A standard paradigm for sentiment analysis is to rely on a singular LLM and makes the decision in a single round under the framework of in-context learning. This framework suffers the key disadvantage that the single-turn output generated by a single LLM might not deliver the perfect decision, just as humans sometimes need multiple attempts to get things right. This is especially true for the task of sentiment analysis where deep reasoning is required to address the complex linguistic phenomenon (e.g., clause composition, irony, etc) in the input. To address this issue, this paper introduces a multi-LLM negotiation framework for sentiment analysis. The framework consists of a reasoning-infused generator to provide decision along with rationale, a explanation-deriving discriminator to evaluate the credibility of the generator. The generator and the discriminator iterate until a consensus is reached. The proposed framework naturally addressed the aforementioned challenge, as we are able to take the complementary abilities of two LLMs, have them use rationale to persuade each other for correction. Experiments on a wide range of sentiment analysis benchmarks (SST-2, Movie Review, Twitter, yelp, amazon, IMDB) demonstrate the effectiveness of proposed approach: it consistently yields better performances than the ICL baseline across all benchmarks, and even superior performances to supervised baselines on the Twitter and movie review datasets.
In this paper, we discuss the nlpBDpatriots entry to the shared task on Sentiment Analysis of Bangla Social Media Posts organized at the first workshop on Bangla Language Processing (BLP) co-located with EMNLP. The main objective of this task is to identify the polarity of social media content using a Bangla dataset annotated with positive, neutral, and negative labels provided by the shared task organizers. Our best system for this task is a transfer learning approach with data augmentation which achieved a micro F1 score of 0.71. Our best system ranked 12th among 30 teams that participated in the competition.
When traveling to an unfamiliar city for holidays, tourists often rely on guidebooks, travel websites, or recommendation systems to plan their daily itineraries and explore popular points of interest (POIs). However, these approaches may lack optimization in terms of time feasibility, localities, and user preferences. In this paper, we propose the SBTRec algorithm: a BERT-based Trajectory Recommendation with sentiment analysis, for recommending personalized sequences of POIs as itineraries. The key contributions of this work include analyzing users' check-ins and uploaded photos to understand the relationship between POI visits and distance. We introduce SBTRec, which encompasses sentiment analysis to improve recommendation accuracy by understanding users' preferences and satisfaction levels from reviews and comments about different POIs. Our proposed algorithms are evaluated against other sequence prediction methods using datasets from 8 cities. The results demonstrate that SBTRec achieves an average F1 score of 61.45%, outperforming baseline algorithms. The paper further discusses the flexibility of the SBTRec algorithm, its ability to adapt to different scenarios and cities without modification, and its potential for extension by incorporating additional information for more reliable predictions. Overall, SBTRec provides personalized and relevant POI recommendations, enhancing tourists' overall trip experiences. Future work includes fine-tuning personalized embeddings for users, with evaluation of users' comments on POIs,~to further enhance prediction accuracy.