Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Sentiment Analysis": models, code, and papers

LSTM based models stability in the context of Sentiment Analysis for social media

Add code

Nov 21, 2022
Bousselham El Haddaoui, Raddouane Chiheb, Rdouan Faizi, Abdellatif El Afia

Deep learning techniques have proven their effectiveness for Sentiment Analysis (SA) related tasks. Recurrent neural networks (RNN), especially Long Short-Term Memory (LSTM) and Bidirectional LSTM, have become a reference for building accurate predictive models. However, the models complexity and the number of hyperparameters to configure raises several questions related to their stability. In this paper, we present various LSTM models and their key parameters, and we perform experiments to test the stability of these models in the context of Sentiment Analysis.

* Short note, 3 pages, MoroccoAI Annual Conference 2021 

Few-shot Multimodal Sentiment Analysis based on Multimodal Probabilistic Fusion Prompts

Add code

Nov 12, 2022
Xiaocui Yang, Shi Feng, Daling Wang, Pengfei Hong, Soujanya Poria

Multimodal sentiment analysis is a trending topic with the explosion of multimodal content on the web. Present studies in multimodal sentiment analysis rely on large-scale supervised data. Collating supervised data is time-consuming and labor-intensive. As such, it is essential to investigate the problem of few-shot multimodal sentiment analysis. Previous works in few-shot models generally use language model prompts, which can improve performance in low-resource settings. However, the textual prompt ignores the information from other modalities. We propose Multimodal Probabilistic Fusion Prompts, which can provide diverse cues for multimodal sentiment detection. We first design a unified multimodal prompt to reduce the discrepancy in different modal prompts. To improve the robustness of our model, we then leverage multiple diverse prompts for each input and propose a probabilistic method to fuse the output predictions. Extensive experiments conducted on three datasets confirm the effectiveness of our approach.

* under review 

UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion Recognition

Add code

Nov 21, 2022
Guimin Hu, Ting-En Lin, Yi Zhao, Guangming Lu, Yuchuan Wu, Yongbin Li

Multimodal sentiment analysis (MSA) and emotion recognition in conversation (ERC) are key research topics for computers to understand human behaviors. From a psychological perspective, emotions are the expression of affect or feelings during a short period, while sentiments are formed and held for a longer period. However, most existing works study sentiment and emotion separately and do not fully exploit the complementary knowledge behind the two. In this paper, we propose a multimodal sentiment knowledge-sharing framework (UniMSE) that unifies MSA and ERC tasks from features, labels, and models. We perform modality fusion at the syntactic and semantic levels and introduce contrastive learning between modalities and samples to better capture the difference and consistency between sentiments and emotions. Experiments on four public benchmark datasets, MOSI, MOSEI, MELD, and IEMOCAP, demonstrate the effectiveness of the proposed method and achieve consistent improvements compared with state-of-the-art methods.

* Accepted to EMNLP 2022 main conference 

BERT-Based Combination of Convolutional and Recurrent Neural Network for Indonesian Sentiment Analysis

Add code

Nov 10, 2022
Hendri Murfi, Syamsyuriani, Theresia Gowandi, Gianinna Ardaneswari, Siti Nurrohmah

Sentiment analysis is the computational study of opinions and emotions ex-pressed in text. Deep learning is a model that is currently producing state-of-the-art in various application domains, including sentiment analysis. Many researchers are using a hybrid approach that combines different deep learning models and has been shown to improve model performance. In sentiment analysis, input in text data is first converted into a numerical representation. The standard method used to obtain a text representation is the fine-tuned embedding method. However, this method does not pay attention to each word's context in the sentence. Therefore, the Bidirectional Encoder Representation from Transformer (BERT) model is used to obtain text representations based on the context and position of words in sentences. This research extends the previous hybrid deep learning using BERT representation for Indonesian sentiment analysis. Our simulation shows that the BERT representation improves the accuracies of all hybrid architectures. The BERT-based LSTM-CNN also reaches slightly better accuracies than other BERT-based hybrid architectures.

* 15 pages 

DiaASQ : A Benchmark of Conversational Aspect-based Sentiment Quadruple Analysis

Add code

Nov 20, 2022
Bobo Li, Hao Fei, Fei Li, Yuhan Wu, Jinsong Zhang, Shengqiong Wu, Jingye Li, Yijiang Liu, Lizi Liao, Tat-Seng Chua, Donghong Ji

The rapid development of aspect-based sentiment analysis (ABSA) within recent decades shows great potential for real-world society. The current ABSA works, however, are mostly limited to the scenario of a single text piece, leaving the study in dialogue contexts unexplored. In this work, we introduce a novel task of conversational aspect-based sentiment quadruple analysis, namely DiaASQ, aiming to detect the sentiment quadruple of \emph{target-aspect-opinion-sentiment} in a dialogue. DiaASQ bridges the gap between fine-grained sentiment analysis and conversational opinion mining. We manually construct a large-scale high-quality DiaASQ dataset in both Chinese and English languages. We deliberately develop a neural model to benchmark the task, which advances in effectively performing end-to-end quadruple prediction, and manages to incorporate rich dialogue-specific and discourse feature representations for better cross-utterance quadruple extraction. We finally point out several potential future works to facilitate the follow-up research of this new task.


Syntax-Guided Domain Adaptation for Aspect-based Sentiment Analysis

Add code

Nov 10, 2022
Anguo Dong, Cuiyun Gao, Yan Jia, Qing Liao, Xuan Wang, Lei Wang, Jing Xiao

Aspect-based sentiment analysis (ABSA) aims at extracting opinionated aspect terms in review texts and determining their sentiment polarities, which is widely studied in both academia and industry. As a fine-grained classification task, the annotation cost is extremely high. Domain adaptation is a popular solution to alleviate the data deficiency issue in new domains by transferring common knowledge across domains. Most cross-domain ABSA studies are based on structure correspondence learning (SCL), and use pivot features to construct auxiliary tasks for narrowing down the gap between domains. However, their pivot-based auxiliary tasks can only transfer knowledge of aspect terms but not sentiment, limiting the performance of existing models. In this work, we propose a novel Syntax-guided Domain Adaptation Model, named SDAM, for more effective cross-domain ABSA. SDAM exploits syntactic structure similarities for building pseudo training instances, during which aspect terms of target domain are explicitly related to sentiment polarities. Besides, we propose a syntax-based BERT mask language model for further capturing domain-invariant features. Finally, to alleviate the sentiment inconsistency issue in multi-gram aspect terms, we introduce a span-based joint aspect term and sentiment analysis module into the cross-domain End2End ABSA. Experiments on five benchmark datasets show that our model consistently outperforms the state-of-the-art baselines with respect to Micro-F1 metric for the cross-domain End2End ABSA task.


BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19 Tweets

Add code

Nov 04, 2022
Javad Hassannataj Joloudari, Sadiq Hussain, Mohammad Ali Nematollahi, Rouhollah Bagheri, Fatemeh Fazl, Roohallah Alizadehsani, Reza Lashgari

The free flow of information has been accelerated by the rapid development of social media technology. There has been a significant social and psychological impact on the population due to the outbreak of Coronavirus disease (COVID-19). The COVID-19 pandemic is one of the current events being discussed on social media platforms. In order to safeguard societies from this pandemic, studying people's emotions on social media is crucial. As a result of their particular characteristics, sentiment analysis of texts like tweets remains challenging. Sentiment analysis is a powerful text analysis tool. It automatically detects and analyzes opinions and emotions from unstructured data. Texts from a wide range of sources are examined by a sentiment analysis tool, which extracts meaning from them, including emails, surveys, reviews, social media posts, and web articles. To evaluate sentiments, natural language processing (NLP) and machine learning techniques are used, which assign weights to entities, topics, themes, and categories in sentences or phrases. Machine learning tools learn how to detect sentiment without human intervention by examining examples of emotions in text. In a pandemic situation, analyzing social media texts to uncover sentimental trends can be very helpful in gaining a better understanding of society's needs and predicting future trends. We intend to study society's perception of the COVID-19 pandemic through social media using state-of-the-art BERT and Deep CNN models. The superiority of BERT models over other deep models in sentiment analysis is evident and can be concluded from the comparison of the various research studies mentioned in this article.

* 19 pages, 5 figures 

Generative Aspect-Based Sentiment Analysis with Contrastive Learning and Expressive Structure

Add code

Nov 14, 2022
Joseph J. Peper, Lu Wang

Generative models have demonstrated impressive results on Aspect-based Sentiment Analysis (ABSA) tasks, particularly for the emerging task of extracting Aspect-Category-Opinion-Sentiment (ACOS) quadruples. However, these models struggle with implicit sentiment expressions, which are commonly observed in opinionated content such as online reviews. In this work, we introduce GEN-SCL-NAT, which consists of two techniques for improved structured generation for ACOS quadruple extraction. First, we propose GEN-SCL, a supervised contrastive learning objective that aids quadruple prediction by encouraging the model to produce input representations that are discriminable across key input attributes, such as sentiment polarity and the existence of implicit opinions and aspects. Second, we introduce GEN-NAT, a new structured generation format that better adapts autoregressive encoder-decoder models to extract quadruples in a generative fashion. Experimental results show that GEN-SCL-NAT achieves top performance across three ACOS datasets, averaging 1.48% F1 improvement, with a maximum 1.73% increase on the LAPTOP-L1 dataset. Additionally, we see significant gains on implicit aspect and opinion splits that have been shown as challenging for existing ACOS approaches.

* Findings of EMNLP 2022 

AX-MABSA: A Framework for Extremely Weakly Supervised Multi-label Aspect Based Sentiment Analysis

Add code

Nov 07, 2022
Sabyasachi Kamila, Walid Magdy, Sourav Dutta, MingXue Wang

Aspect Based Sentiment Analysis is a dominant research area with potential applications in social media analytics, business, finance, and health. Prior works in this area are primarily based on supervised methods, with a few techniques using weak supervision limited to predicting a single aspect category per review sentence. In this paper, we present an extremely weakly supervised multi-label Aspect Category Sentiment Analysis framework which does not use any labelled data. We only rely on a single word per class as an initial indicative information. We further propose an automatic word selection technique to choose these seed categories and sentiment words. We explore unsupervised language model post-training to improve the overall performance, and propose a multi-label generator model to generate multiple aspect category-sentiment pairs per review sentence. Experiments conducted on four benchmark datasets showcase our method to outperform other weakly supervised baselines by a significant margin.

* to be published in EMNLP 2022 

Entity-level Sentiment Analysis in Contact Center Telephone Conversations

Add code

Oct 26, 2022
Xue-Yong Fu, Cheng Chen, Md Tahmid Rahman Laskar, Shayna Gardiner, Pooja Hiranandani, Shashi Bhushan TN

Entity-level sentiment analysis predicts the sentiment about entities mentioned in a given text. It is very useful in a business context to understand user emotions towards certain entities, such as products or companies. In this paper, we demonstrate how we developed an entity-level sentiment analysis system that analyzes English telephone conversation transcripts in contact centers to provide business insight. We present two approaches, one entirely based on the transformer-based DistilBERT model, and another that uses a convolutional neural network supplemented with some heuristic rules.

* EMNLP 2022