Abstract:Research on understanding emotions in written language continues to expand, especially for understudied languages with distinctive regional expressions and cultural features, such as Bangla. This study examines emotion analysis using 22,698 social media comments from the EmoNoBa dataset. For language analysis, we employ machine learning models: Linear SVM, KNN, and Random Forest with n-gram data from a TF-IDF vectorizer. We additionally investigated how PCA affects the reduction of dimensionality. Moreover, we utilized a BiLSTM model and AdaBoost to improve decision trees. To make our machine learning models easier to understand, we used LIME to explain the predictions of the AdaBoost classifier, which uses decision trees. With the goal of advancing sentiment analysis in languages with limited resources, our work examines various techniques to find efficient techniques for emotion identification in Bangla.
Abstract:Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP) due to the language's low-resource status and the multi-step reasoning required. Existing models struggle with complex Bengali MWPs, largely because no human-annotated Bengali dataset has previously addressed this task. This gap has limited progress in Bengali mathematical reasoning. To address this, we created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions. We designed this dataset to support reasoning-focused evaluation and model development in a linguistically underrepresented context. Using SOMADHAN, we evaluated a range of large language models (LLMs) - including GPT-4o, GPT-3.5 Turbo, LLaMA series models, Deepseek, and Qwen - through both zero-shot and few-shot prompting with and without Chain of Thought (CoT) reasoning. CoT prompting consistently improved performance over standard prompting, especially in tasks requiring multi-step logic. LLaMA-3.3 70B achieved the highest accuracy of 88% with few-shot CoT prompting. We also applied Low-Rank Adaptation (LoRA) to fine-tune models efficiently, enabling them to adapt to Bengali MWPs with minimal computational cost. Our work fills a critical gap in Bengali NLP by providing a high-quality reasoning dataset and a scalable framework for solving complex MWPs. We aim to advance equitable research in low-resource languages and enhance reasoning capabilities in educational and language technologies.
Abstract:Urban transportation plays a vital role in modern city life, affecting how efficiently people and goods move around. This study analyzes transportation patterns using two datasets: the NYC Taxi Trip dataset from New York City and the Pathao Food Trip dataset from Dhaka, Bangladesh. Our goal is to identify key trends in demand, peak times, and important geographical hotspots. We start with Exploratory Data Analysis (EDA) to understand the basic characteristics of the datasets. Next, we perform geospatial analysis to map out high-demand and low-demand regions. We use the SARIMAX model for time series analysis to forecast demand patterns, capturing seasonal and weekly variations. Lastly, we apply clustering techniques to identify significant areas of high and low demand. Our findings provide valuable insights for optimizing fleet management and resource allocation in both passenger transport and food delivery services. These insights can help improve service efficiency, better meet customer needs, and enhance urban transportation systems in diverse urban environments.
Abstract:The Bangla language includes many regional dialects, adding to its cultural richness. The translation of Bangla Language into regional dialects presents a challenge due to significant variations in vocabulary, pronunciation, and sentence structure across regions like Chittagong, Sylhet, Barishal, Noakhali, and Mymensingh. These dialects, though vital to local identities, lack of representation in technological applications. This study addresses this gap by translating standard Bangla into these dialects using neural machine translation (NMT) models, including BanglaT5, mT5, and mBART50. The work is motivated by the need to preserve linguistic diversity and improve communication among dialect speakers. The models were fine-tuned using the "Vashantor" dataset, containing 32,500 sentences across various dialects, and evaluated through Character Error Rate (CER) and Word Error Rate (WER) metrics. BanglaT5 demonstrated superior performance with a CER of 12.3% and WER of 15.7%, highlighting its effectiveness in capturing dialectal nuances. The outcomes of this research contribute to the development of inclusive language technologies that support regional dialects and promote linguistic diversity.
Abstract:Mathematical word problems (MWPs) involve the task of converting textual descriptions into mathematical equations. This poses a significant challenge in natural language processing, particularly for low-resource languages such as Bengali. This paper addresses this challenge by developing an innovative approach to solving Bengali MWPs using transformer-based models, including Basic Transformer, mT5, BanglaT5, and mBART50. To support this effort, the "PatiGonit" dataset was introduced, containing 10,000 Bengali math problems, and these models were fine-tuned to translate the word problems into equations accurately. The evaluation revealed that the mT5 model achieved the highest accuracy of 97.30%, demonstrating the effectiveness of transformer models in this domain. This research marks a significant step forward in Bengali natural language processing, offering valuable methodologies and resources for educational AI tools. By improving math education, it also supports the development of advanced problem-solving skills for Bengali-speaking students.