King Fahd University of Petroleum and Minerals, Information and Computer Science Department
Abstract:Large language models (LLMs) have shown remarkable progress in reasoning abilities and general natural language processing (NLP) tasks, yet their performance on Arabic data, characterized by rich morphology, diverse dialects, and complex script, remains underexplored. This paper presents a comprehensive benchmarking study of multiple reasoning-focused LLMs, with a special emphasis on the newly introduced DeepSeek models, across a suite of fifteen Arabic NLP tasks. We experiment with various strategies, including zero-shot, few-shot, and fine-tuning. This allows us to systematically evaluate performance on datasets covering a range of applications to examine their capacity for linguistic reasoning under different levels of complexity. Our experiments reveal several key findings. First, carefully selecting just three in-context examples delivers an average uplift of over 13 F1 points on classification tasks-boosting sentiment analysis from 35.3% to 87.5% and paraphrase detection from 56.1% to 87.0%. Second, reasoning-focused DeepSeek architectures outperform a strong GPT o4-mini baseline by an average of 12 F1 points on complex inference tasks in the zero-shot setting. Third, LoRA-based fine-tuning yields up to an additional 8 points in F1 and BLEU compared to equivalent increases in model scale. The code is available at https://anonymous.4open.science/r/AraReasoner41299
Abstract:Mainstream large vision-language models (LVLMs) inherently encode cultural biases, highlighting the need for diverse multimodal datasets. To address this gap, we introduce Pearl, a large-scale Arabic multimodal dataset and benchmark explicitly designed for cultural understanding. Constructed through advanced agentic workflows and extensive human-in-the-loop annotations by 45 annotators from across the Arab world, Pearl comprises over K multimodal examples spanning ten culturally significant domains covering all Arab countries. We further provide two robust evaluation benchmarks Pearl and Pearl-Lite along with a specialized subset Pearl-X explicitly developed to assess nuanced cultural variations. Comprehensive evaluations on state-of-the-art open and proprietary LVLMs demonstrate that reasoning-centric instruction alignment substantially improves models' cultural grounding compared to conventional scaling methods. Pearl establishes a foundational resource for advancing culturally-informed multimodal modeling research. All datasets and benchmarks are publicly available.
Abstract:Sign language is the primary communication language for people with disabling hearing loss. Sign language recognition (SLR) systems aim to recognize sign gestures and translate them into spoken language. One of the main challenges in SLR is the scarcity of annotated datasets. To address this issue, we propose a semi-supervised learning (SSL) approach for SLR (SSLR), employing a pseudo-label method to annotate unlabeled samples. The sign gestures are represented using pose information that encodes the signer's skeletal joint points. This information is used as input for the Transformer backbone model utilized in the proposed approach. To demonstrate the learning capabilities of SSL across various labeled data sizes, several experiments were conducted using different percentages of labeled data with varying numbers of classes. The performance of the SSL approach was compared with a fully supervised learning-based model on the WLASL-100 dataset. The obtained results of the SSL model outperformed the supervised learning-based model with less labeled data in many cases.
Abstract:Continuous sign language recognition (CSLR) focuses on interpreting and transcribing sequences of sign language gestures in videos. In this work, we propose CLIP sign language adaptation (CLIP-SLA), a novel CSLR framework that leverages the powerful pre-trained visual encoder from the CLIP model to sign language tasks through parameter-efficient fine-tuning (PEFT). We introduce two variants, SLA-Adapter and SLA-LoRA, which integrate PEFT modules into the CLIP visual encoder, enabling fine-tuning with minimal trainable parameters. The effectiveness of the proposed frameworks is validated on four datasets: Phoenix2014, Phoenix2014-T, CSL-Daily, and Isharah-500, where both CLIP-SLA variants outperformed several SOTA models with fewer trainable parameters. Extensive ablation studies emphasize the effectiveness and flexibility of the proposed methods with different vision-language models for CSLR. These findings showcase the potential of adapting large-scale pre-trained models for scalable and efficient CSLR, which pave the way for future advancements in sign language understanding.
Abstract:Continuous Sign Language Recognition (CSLR) focuses on the interpretation of a sequence of sign language gestures performed continually without pauses. In this study, we conduct an empirical evaluation of recent deep learning CSLR techniques and assess their performance across various datasets and sign languages. The models selected for analysis implement a range of approaches for extracting meaningful features and employ distinct training strategies. To determine their efficacy in modeling different sign languages, these models were evaluated using multiple datasets, specifically RWTH-PHOENIX-Weather-2014, ArabSign, and GrSL, each representing a unique sign language. The performance of the models was further tested with unseen signers and sentences. The conducted experiments establish new benchmarks on the selected datasets and provide valuable insights into the robustness and generalization of the evaluated techniques under challenging scenarios.
Abstract:Advances in deepfake research have led to the creation of almost perfect manipulations undetectable by human eyes and some deepfakes detection tools. Recently, several techniques have been proposed to differentiate deepfakes from realistic images and videos. This paper introduces a Frequency Enhanced Self-Blended Images (FSBI) approach for deepfakes detection. This proposed approach utilizes Discrete Wavelet Transforms (DWT) to extract discriminative features from the self-blended images (SBI) to be used for training a convolutional network architecture model. The SBIs blend the image with itself by introducing several forgery artifacts in a copy of the image before blending it. This prevents the classifier from overfitting specific artifacts by learning more generic representations. These blended images are then fed into the frequency features extractor to detect artifacts that can not be detected easily in the time domain. The proposed approach has been evaluated on FF++ and Celeb-DF datasets and the obtained results outperformed the state-of-the-art techniques with the cross-dataset evaluation protocol.
Abstract:Large language models (LLMs) have demonstrated impressive performance on various downstream tasks without requiring fine-tuning, including ChatGPT, a chat-based model built on top of LLMs such as GPT-3.5 and GPT-4. Despite having a lower training proportion compared to English, these models also exhibit remarkable capabilities in other languages. In this study, we assess the performance of GPT-3.5 and GPT-4 models on seven distinct Arabic NLP tasks: sentiment analysis, translation, transliteration, paraphrasing, part of speech tagging, summarization, and diacritization. Our findings reveal that GPT-4 outperforms GPT-3.5 on five out of the seven tasks. Furthermore, we conduct an extensive analysis of the sentiment analysis task, providing insights into how LLMs achieve exceptional results on a challenging dialectal dataset. Additionally, we introduce a new Python interface https://github.com/ARBML/Taqyim that facilitates the evaluation of these tasks effortlessly.
Abstract:The use of deep unfolding networks in compressive sensing (CS) has seen wide success as they provide both simplicity and interpretability. However, since most deep unfolding networks are iterative, this incurs significant redundancies in the network. In this work, we propose a novel recursion-based framework to enhance the efficiency of deep unfolding models. First, recursions are used to effectively eliminate the redundancies in deep unfolding networks. Secondly, we randomize the number of recursions during training to decrease the overall training time. Finally, to effectively utilize the power of recursions, we introduce a learnable unit to modulate the features of the model based on both the total number of iterations and the current iteration index. To evaluate the proposed framework, we apply it to both ISTA-Net+ and COAST. Extensive testing shows that our proposed framework allows the network to cut down as much as 75% of its learnable parameters while mostly maintaining its performance, and at the same time, it cuts around 21% and 42% from the training time for ISTA-Net+ and COAST respectively. Moreover, when presented with a limited training dataset, the recursive models match or even outperform their respective non-recursive baseline. Codes and pretrained models are available at https://github.com/Rawwad-Alhejaili/Recursions-Are-All-You-Need .
Abstract:Wearing a face mask is one of the adjustments we had to follow to reduce the spread of the coronavirus. Having our faces covered by masks constantly has driven the need to understand and investigate how this behavior affects the recognition capability of face recognition systems. Current face recognition systems have extremely high accuracy when dealing with unconstrained general face recognition cases but do not generalize well with occluded masked faces. In this work, we propose a system for masked face recognition. The proposed system comprises two Convolutional Neural Network (CNN) models and two Transformer models. The CNN models have been fine-tuned on FaceNet pre-trained model. We ensemble the predictions of the four models using the majority voting technique to identify the person with the mask. The proposed system has been evaluated on a synthetically masked LFW dataset created in this work. The best accuracy is obtained using the ensembled models with an accuracy of 92%. This recognition rate outperformed the accuracy of other models and it shows the correctness and robustness of the proposed model for recognizing masked faces. The code and data are available at https://github.com/Hamzah-Luqman/MFR
Abstract:Sign language recognition has attracted the interest of researchers in recent years. While numerous approaches have been proposed for European and Asian sign languages recognition, very limited attempts have been made to develop similar systems for the Arabic sign language (ArSL). This can be attributed partly to the lack of a dataset at the sentence level. In this paper, we aim to make a significant contribution by proposing ArabSign, a continuous ArSL dataset. The proposed dataset consists of 9,335 samples performed by 6 signers. The total time of the recorded sentences is around 10 hours and the average sentence's length is 3.1 signs. ArabSign dataset was recorded using a Kinect V2 camera that provides three types of information (color, depth, and skeleton joint points) recorded simultaneously for each sentence. In addition, we provide the annotation of the dataset according to ArSL and Arabic language structures that can help in studying the linguistic characteristics of ArSL. To benchmark this dataset, we propose an encoder-decoder model for Continuous ArSL recognition. The model has been evaluated on the proposed dataset, and the obtained results show that the encoder-decoder model outperformed the attention mechanism with an average word error rate (WER) of 0.50 compared with 0.62 with the attention mechanism. The data and code are available at github.com/Hamzah-Luqman/ArabSign