The detection of online influence operations -- coordinated campaigns by malicious actors to spread narratives -- has traditionally depended on content analysis or network features. These approaches are increasingly brittle as generative models produce convincing text, platforms restrict access to behavioral data, and actors migrate to less-regulated spaces. We introduce a platform-agnostic framework that identifies malicious actors from their behavioral policies by modeling user activity as sequential decision processes. We apply this approach to 12,064 Reddit users, including 99 accounts linked to the Russian Internet Research Agency in Reddit's 2017 transparency report, analyzing over 38 million activity steps from 2015-2018. Activity-based representations, which model how users act rather than what they post, consistently outperform content models in detecting malicious accounts. When distinguishing trolls -- users engaged in coordinated manipulation -- from ordinary users, policy-based classifiers achieve a median macro-$F_1$ of 94.9%, compared to 91.2% for text embeddings. Policy features also enable earlier detection from short traces and degrade more gracefully under evasion strategies or data corruption. These findings show that behavioral dynamics encode stable, discriminative signals of manipulation and point to resilient, cross-platform detection strategies in the era of synthetic content and limited data access.
Large language models (LLMs) are increasingly used for emotional support and mental health-related interactions outside clinical settings, yet little is known about how people evaluate and relate to these systems in everyday use. We analyze 5,126 Reddit posts from 47 mental health communities describing experiential or exploratory use of AI for emotional support or therapy. Grounded in the Technology Acceptance Model and therapeutic alliance theory, we develop a theory-informed annotation framework and apply a hybrid LLM-human pipeline to analyze evaluative language, adoption-related attitudes, and relational alignment at scale. Our results show that engagement is shaped primarily by narrated outcomes, trust, and response quality, rather than emotional bond alone. Positive sentiment is most strongly associated with task and goal alignment, while companionship-oriented use more often involves misaligned alliances and reported risks such as dependence and symptom escalation. Overall, this work demonstrates how theory-grounded constructs can be operationalized in large-scale discourse analysis and highlights the importance of studying how users interpret language technologies in sensitive, real-world contexts.
Generative AI chatbots have proven surprisingly effective at persuading people to change their beliefs and attitudes in lab settings. However, the practical implications of these findings are not yet clear. In this work, we explore the impact of rehabilitative conversations with generative AI chatbots on users who share toxic content online. Toxic behaviors -- like insults or threats of violence, are widespread in online communities. Strategies to deal with toxic behavior are typically punitive, such as removing content or banning users. Rehabilitative approaches are rarely attempted, in part due to the emotional and psychological cost of engaging with aggressive users. In collaboration with seven large Reddit communities, we conducted a large-scale field experiment (N=893) to invite people who had recently posted toxic content to participate in conversations with AI chatbots. A qualitative analysis of the conversations shows that many participants engaged in good faith and even expressed remorse or a desire to change. However, we did not observe a significant change in toxic behavior in the following month compared to a control group. We discuss possible explanations for our findings, as well as theoretical and practical implications based on our results.
Entity matching is a crucial component in various recommender systems, including conversational recommender systems (CRS) and knowledge-based recommender systems. However, the lack of rigorous evaluation frameworks for cross-dataset entity matching impedes progress in areas such as LLM-driven conversational recommendations and knowledge-grounded dataset construction. In this paper, we introduce Reddit-Amazon-EM, a novel dataset comprising naturally occurring items from Reddit and the Amazon '23 dataset. Through careful manual annotation, we identify corresponding movies across Reddit-Movies and Amazon'23, two existing recommender system datasets with inherently overlapping catalogs. Leveraging Reddit-Amazon-EM, we conduct a comprehensive evaluation of state-of-the-art entity matching methods, including rule-based, graph-based, lexical-based, embedding-based, and LLM-based approaches. For reproducible research, we release our manually annotated entity matching gold set and provide the mapping between the two datasets using the best-performing method from our experiments. This serves as a valuable resource for advancing future work on entity matching in recommender systems.
Motivated by the remarkable progress of large language models (LLMs) in objective tasks like mathematics and coding, there is growing interest in their potential to simulate human behavior--a capability with profound implications for transforming social science research and customer-centric business insights. However, LLMs often lack a nuanced understanding of human cognition and behavior, limiting their effectiveness in social simulation and personalized applications. We posit that this limitation stems from a fundamental misalignment: standard LLM pretraining on vast, uncontextualized web data does not capture the continuous, situated context of an individual's decisions, thoughts, and behaviors over time. To bridge this gap, we introduce HumanLLM, a foundation model designed for personalized understanding and simulation of individuals. We first construct the Cognitive Genome Dataset, a large-scale corpus curated from real-world user data on platforms like Reddit, Twitter, Blogger, and Amazon. Through a rigorous, multi-stage pipeline involving data filtering, synthesis, and quality control, we automatically extract over 5.5 million user logs to distill rich profiles, behaviors, and thinking patterns. We then formulate diverse learning tasks and perform supervised fine-tuning to empower the model to predict a wide range of individualized human behaviors, thoughts, and experiences. Comprehensive evaluations demonstrate that HumanLLM achieves superior performance in predicting user actions and inner thoughts, more accurately mimics user writing styles and preferences, and generates more authentic user profiles compared to base models. Furthermore, HumanLLM shows significant gains on out-of-domain social intelligence benchmarks, indicating enhanced generalization.
User interactions with language models vary due to static properties of the user (trait) and the specific context of the interaction (state). However, existing persona datasets (like PersonaChat, PANDORA etc.) capture only trait, and ignore the impact of state. We introduce Chameleon, a dataset of 5,001 contextual psychological profiles from 1,667 Reddit users, each measured across multiple contexts. Using the Chameleon dataset, we present three key findings. First, inspired by Latent State-Trait theory, we decompose variance and find that 74\% is within-person(state) while only 26\% is between-person (trait). Second, we find that LLMs are state-blind: they focus on trait only, and produce similar responses regardless of state. Third, we find that reward models react to user state, but inconsistently: different models favor or penalize the same users in opposite directions. We release Chameleon to support research on affective computing, personalized dialogue, and RLHF alignment.
Human cognition exhibits strong circadian modulation, yet its influence on high-dimensional semantic behavior remains poorly understood. Using large-scale Reddit data, we quantify time-of-day variation in language use by embedding text into a pretrained transformer model and measuring semantic entropy as an index of linguistic exploration-exploitation, for which we show a robust circadian rhythmicity that could be entrained by seasonal light cues. Distinguishing between local and global semantic entropy reveals a systematic temporal dissociation: local semantic exploration peaks in the morning, reflecting broader exploration of semantic space, whereas global semantic diversity peaks later in the day as submissions accumulate around already established topics, consistent with "rich-get-richer" dynamics. These patterns are not explained by sentiment or affective valence, indicating that semantic exploration captures a cognitive dimension distinct from mood. The observed temporal structure aligns with known diurnal patterns in neuromodulatory systems, suggesting that biological circadian rhythms extend to the semantic domain.
Authorship verification (AV) is the task of determining whether two texts were written by the same author and has been studied extensively, predominantly for English data. In contrast, large-scale benchmarks and systematic evaluations for other languages remain scarce. We address this gap by introducing GerAV, a comprehensive benchmark for German AV comprising over 600k labeled text pairs. GerAV is built from Twitter and Reddit data, with the Reddit part further divided into in-domain and cross-domain message-based subsets, as well as a profile-based subset. This design enables controlled analysis of the effects of data source, topical domain, and text length. Using the provided training splits, we conduct a systematic evaluation of strong baselines and state-of-the-art models and find that our best approach, a fine-tuned large language model, outperforms recent baselines by up to 0.09 absolute F1 score and surpasses GPT-5 in a zero-shot setting by 0.08. We further observe a trade-off between specialization and generalization: models trained on specific data types perform best under matching conditions but generalize less well across data regimes, a limitation that can be mitigated by combining training sources. Overall, GerAV provides a challenging and versatile benchmark for advancing research on German and cross-domain AV.
Recent reports on generative AI chatbot use raise concerns about its addictive potential. An in-depth understanding is imperative to minimize risks, yet AI chatbot addiction remains poorly understood. This study examines how to characterize AI chatbot addiction--why users become addicted, the symptoms commonly reported, and the distinct types it comprises. We conducted a thematic analysis of Reddit entries (n=334) across 14 subreddits where users narrated their experiences with addictive AI chatbot use, followed by an exploratory data analysis. We found: (1) users' dependence tied to the "AI Genie" phenomenon--users can get exactly anything they want with minimal effort--and marked by symptoms that align with addiction literature, (2) three distinct addiction types: Escapist Roleplay, Pseudosocial Companion, and Epistemic Rabbit Hole, (3) sexual content involved in multiple cases, and (4) recovery strategies' perceived helpfulness differ between addiction types. Our work lays empirical groundwork to inform future strategies for prevention, diagnosis, and intervention.
Caregivers seeking AI-mediated support express complex needs -- information-seeking, emotional validation, and distress cues -- that warrant careful evaluation of response safety and appropriateness. Existing AI evaluation frameworks, primarily focused on general risks (toxicity, hallucinations, policy violations, etc), may not adequately capture the nuanced risks of LLM-responses in caregiving-contexts. We introduce RubRIX (Rubric-based Risk Index), a theory-driven, clinician-validated framework for evaluating risks in LLM caregiving responses. Grounded in the Elements of an Ethic of Care, RubRIX operationalizes five empirically-derived risk dimensions: Inattention, Bias & Stigma, Information Inaccuracy, Uncritical Affirmation, and Epistemic Arrogance. We evaluate six state-of-the-art LLMs on over 20,000 caregiver queries from Reddit and ALZConnected. Rubric-guided refinement consistently reduced risk-components by 45-98% after one iteration across models. This work contributes a methodological approach for developing domain-sensitive, user-centered evaluation frameworks for high-burden contexts. Our findings highlight the importance of domain-sensitive, interactional risk evaluation for the responsible deployment of LLMs in caregiving support contexts. We release benchmark datasets to enable future research on contextual risk evaluation in AI-mediated support.