Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.


Large Language Models are increasingly used in conversational systems such as digital personal assistants, shaping how people interact with technology through language. While their responses often sound fluent and natural, they can also carry subtle tone biases such as sounding overly polite, cheerful, or cautious even when neutrality is expected. These tendencies can influence how users perceive trust, empathy, and fairness in dialogue. In this study, we explore tone bias as a hidden behavioral trait of large language models. The novelty of this research lies in the integration of controllable large language model based dialogue synthesis with tone classification models, enabling robust and ethical emotion recognition in personal assistant interactions. We created two synthetic dialogue datasets, one generated from neutral prompts and another explicitly guided to produce positive or negative tones. Surprisingly, even the neutral set showed consistent tonal skew, suggesting that bias may stem from the model's underlying conversational style. Using weak supervision through a pretrained DistilBERT model, we labeled tones and trained several classifiers to detect these patterns. Ensemble models achieved macro F1 scores up to 0.92, showing that tone bias is systematic, measurable, and relevant to designing fair and trustworthy conversational AI.
This paper addresses data quality issues in multimodal emotion recognition in conversation (MERC) through systematic quality control and multi-stage transfer learning. We implement a quality control pipeline for MELD and IEMOCAP datasets that validates speaker identity, audio-text alignment, and face detection. We leverage transfer learning from speaker and face recognition, assuming that identity-discriminative embeddings capture not only stable acoustic and Facial traits but also person-specific patterns of emotional expression. We employ RecoMadeEasy(R) engines for extracting 512-dimensional speaker and face embeddings, fine-tune MPNet-v2 for emotion-aware text representations, and adapt these features through emotion-specific MLPs trained on unimodal datasets. MAMBA-based trimodal fusion achieves 64.8% accuracy on MELD and 74.3% on IEMOCAP. These results show that combining identity-based audio and visual embeddings with emotion-tuned text representations on a quality-controlled subset of data yields consistent competitive performance for multimodal emotion recognition in conversation and provides a basis for further improvement on challenging, low-frequency emotion classes.
This paper proposes a joint modeling method of the Big Five, which has long been studied, and HEXACO, which has recently attracted attention in psychology, for automatically recognizing apparent personality traits from multimodal human behavior. Most previous studies have used the Big Five for multimodal apparent personality-trait recognition. However, no study has focused on apparent HEXACO which can evaluate an Honesty-Humility trait related to displaced aggression and vengefulness, social-dominance orientation, etc. In addition, the relationships between the Big Five and HEXACO when modeled by machine learning have not been clarified. We expect awareness of multimodal human behavior to improve by considering these relationships. The key advance of our proposed method is to optimize jointly recognizing the Big Five and HEXACO. Experiments using a self-introduction video dataset demonstrate that the proposed method can effectively recognize the Big Five and HEXACO.




Automatic real personality recognition (RPR) aims to evaluate human real personality traits from their expressive behaviours. However, most existing solutions generally act as external observers to infer observers' personality impressions based on target individuals' expressive behaviours, which significantly deviate from their real personalities and consistently lead to inferior recognition performance. Inspired by the association between real personality and human internal cognition underlying the generation of expressive behaviours, we propose a novel RPR approach that efficiently simulates personalised internal cognition from easy-accessible external short audio-visual behaviours expressed by the target individual. The simulated personalised cognition, represented as a set of network weights that enforce the personalised network to reproduce the individual-specific facial reactions, is further encoded as a novel graph containing two-dimensional node and edge feature matrices, with a novel 2D Graph Neural Network (2D-GNN) proposed for inferring real personality traits from it. To simulate real personality-related cognition, an end-to-end strategy is designed to jointly train our cognition simulation, 2D graph construction, and personality recognition modules.
This study investigates the interaction between personality traits and emotional expression, exploring how personality information can improve speech emotion recognition (SER). We collected personality annotation for the IEMOCAP dataset, and the statistical analysis identified significant correlations between personality traits and emotional expressions. To extract finegrained personality features, we propose a temporal interaction condition network (TICN), in which personality features are integrated with Hubert-based acoustic features for SER. Experiments show that incorporating ground-truth personality traits significantly enhances valence recognition, improving the concordance correlation coefficient (CCC) from 0.698 to 0.785 compared to the baseline without personality information. For practical applications in dialogue systems where personality information about the user is unavailable, we develop a front-end module of automatic personality recognition. Using these automatically predicted traits as inputs to our proposed TICN model, we achieve a CCC of 0.776 for valence recognition, representing an 11.17% relative improvement over the baseline. These findings confirm the effectiveness of personality-aware SER and provide a solid foundation for further exploration in personality-aware speech processing applications.
Despite significant progress in neural spoken dialog systems, personality-aware conversation agents -- capable of adapting behavior based on personalities -- remain underexplored due to the absence of personality annotations in speech datasets. We propose a pipeline that preprocesses raw audio recordings to create a dialogue dataset annotated with timestamps, response types, and emotion/sentiment labels. We employ an automatic speech recognition (ASR) system to extract transcripts and timestamps, then generate conversation-level annotations. Leveraging these annotations, we design a system that employs large language models to predict conversational personality. Human evaluators were engaged to identify conversational characteristics and assign personality labels. Our analysis demonstrates that the proposed system achieves stronger alignment with human judgments compared to existing approaches.
Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
In recent years, predicting Big Five personality traits from multimodal data has received significant attention in artificial intelligence (AI). However, existing computational models often fail to achieve satisfactory performance. Psychological research has shown a strong correlation between pose and personality traits, yet previous research has largely ignored pose data in computational models. To address this gap, we develop a novel multimodal dataset that incorporates full-body pose data. The dataset includes video recordings of 287 participants completing a virtual interview with 36 questions, along with self-reported Big Five personality scores as labels. To effectively utilize this multimodal data, we introduce the Psychology-Inspired Network (PINet), which consists of three key modules: Multimodal Feature Awareness (MFA), Multimodal Feature Interaction (MFI), and Psychology-Informed Modality Correlation Loss (PIMC Loss). The MFA module leverages the Vision Mamba Block to capture comprehensive visual features related to personality, while the MFI module efficiently fuses the multimodal features. The PIMC Loss, grounded in psychological theory, guides the model to emphasize different modalities for different personality dimensions. Experimental results show that the PINet outperforms several state-of-the-art baseline models. Furthermore, the three modules of PINet contribute almost equally to the model's overall performance. Incorporating pose data significantly enhances the model's performance, with the pose modality ranking mid-level in importance among the five modalities. These findings address the existing gap in personality-related datasets that lack full-body pose data and provide a new approach for improving the accuracy of personality prediction models, highlighting the importance of integrating psychological insights into AI frameworks.
Accurate emotion recognition is pivotal for nuanced and engaging human-computer interactions, yet remains difficult to achieve, especially in dynamic, conversation-like settings. In this study, we showcase how integrating eye-tracking data, temporal dynamics, and personality traits can substantially enhance the detection of both perceived and felt emotions. Seventy-three participants viewed short, speech-containing videos from the CREMA-D dataset, while being recorded for eye-tracking signals (pupil size, fixation patterns), Big Five personality assessments, and self-reported emotional states. Our neural network models combined these diverse inputs including stimulus emotion labels for contextual cues and yielded marked performance gains compared to the state-of-the-art. Specifically, perceived valence predictions reached a macro F1-score of 0.76, and models incorporating personality traits and stimulus information demonstrated significant improvements in felt emotion accuracy. These results highlight the benefit of unifying physiological, individual and contextual factors to address the subjectivity and complexity of emotional expression. Beyond validating the role of user-specific data in capturing subtle internal states, our findings inform the design of future affective computing and human-agent systems, paving the way for more adaptive and cross-individual emotional intelligence in real-world interactions.