Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

DiffusionDet: Diffusion Model for Object Detection

Add code

Nov 17, 2022
Shoufa Chen, Peize Sun, Yibing Song, Ping Luo

We propose DiffusionDet, a new framework that formulates object detection as a denoising diffusion process from noisy boxes to object boxes. During training stage, object boxes diffuse from ground-truth boxes to random distribution, and the model learns to reverse this noising process. In inference, the model refines a set of randomly generated boxes to the output results in a progressive way. The extensive evaluations on the standard benchmarks, including MS-COCO and LVIS, show that DiffusionDet achieves favorable performance compared to previous well-established detectors. Our work brings two important findings in object detection. First, random boxes, although drastically different from pre-defined anchors or learned queries, are also effective object candidates. Second, object detection, one of the representative perception tasks, can be solved by a generative way. Our code is available at https://github.com/ShoufaChen/DiffusionDet.

* Tech report. Code is available at https://github.com/ShoufaChen/DiffusionDet 
  

DEYO: DETR with YOLO for Step-by-Step Object Detection

Add code

Nov 18, 2022
Haodong Ouyang

Object detection is an important topic in computer vision, with post-processing, an essential part of the typical object detection pipeline, posing a significant bottleneck affecting the performance of traditional object detection models. The detection transformer (DETR), as the first end-to-end target detection model, discards the requirement of manual components like the anchor and non-maximum suppression (NMS), significantly simplifying the target detection process. However, compared with most traditional object detection models, DETR converges very slowly, and a query's meaning is obscure. Thus, inspired by the Step-by-Step concept, this paper proposes a new two-stage object detection model, named DETR with YOLO (DEYO), which relies on a progressive inference to solve the above problems. DEYO is a two-stage architecture comprising a classic target detection model and a DETR-like model as the first and second stages, respectively. Specifically, the first stage provides high-quality query and anchor feeding into the second stage, improving the performance and efficiency of the second stage compared to the original DETR model. Meanwhile, the second stage compensates for the performance degradation caused by the first stage detector's limitations. Extensive experiments demonstrate that DEYO attains 50.6 AP and 52.1 AP in 12 and 36 epochs, respectively, while utilizing ResNet-50 as the backbone and multi-scale features on the COCO dataset. Compared with DINO, an optimal DETR-like model, the developed DEYO model affords a significant performance improvement of 1.6 AP and 1.2 AP in two epoch settings.

  

NeRF-RPN: A general framework for object detection in NeRFs

Add code

Nov 22, 2022
Benran Hu, Junkai Huang, Yichen Liu, Yu-Wing Tai, Chi-Keung Tang

This paper presents the first significant object detection framework, NeRF-RPN, which directly operates on NeRF. Given a pre-trained NeRF model, NeRF-RPN aims to detect all bounding boxes of objects in a scene. By exploiting a novel voxel representation that incorporates multi-scale 3D neural volumetric features, we demonstrate it is possible to regress the 3D bounding boxes of objects in NeRF directly without rendering the NeRF at any viewpoint. NeRF-RPN is a general framework and can be applied to detect objects without class labels. We experimented the NeRF-RPN with various backbone architectures, RPN head designs and loss functions. All of them can be trained in an end-to-end manner to estimate high quality 3D bounding boxes. To facilitate future research in object detection for NeRF, we built a new benchmark dataset which consists of both synthetic and real-world data with careful labeling and clean up. Please click https://youtu.be/M8_4Ih1CJjE for visualizing the 3D region proposals by our NeRF-RPN. Code and dataset will be made available.

  

Plug and Play Active Learning for Object Detection

Add code

Nov 21, 2022
Chenhongyi Yang, Lichao Huang, Elliot J. Crowley

Annotating data for supervised learning is expensive and tedious, and we want to do as little of it as possible. To make the most of a given "annotation budget" we can turn to active learning (AL) which aims to identify the most informative samples in a dataset for annotation. Active learning algorithms are typically uncertainty-based or diversity-based. Both have seen success in image classification, but fall short when it comes to object detection. We hypothesise that this is because: (1) it is difficult to quantify uncertainty for object detection as it consists of both localisation and classification, where some classes are harder to localise, and others are harder to classify; (2) it is difficult to measure similarities for diversity-based AL when images contain different numbers of objects. We propose a two-stage active learning algorithm Plug and Play Active Learning (PPAL) that overcomes these difficulties. It consists of (1) Difficulty Calibrated Uncertainty Sampling, in which we used a category-wise difficulty coefficient that takes both classification and localisation into account to re-weight object uncertainties for uncertainty-based sampling; (2) Category Conditioned Matching Similarity to compute the similarities of multi-instance images as ensembles of their instance similarities. PPAL is highly generalisable because it makes no change to model architectures or detector training pipelines. We benchmark PPAL on the MS-COCO and Pascal VOC datasets using different detector architectures and show that our method outperforms the prior state-of-the-art. Code is available at https://github.com/ChenhongyiYang/PPAL

  

PAI3D: Painting Adaptive Instance-Prior for 3D Object Detection

Add code

Nov 15, 2022
Hao Liu, Zhuoran Xu, Dan Wang, Baofeng Zhang, Guan Wang, Bo Dong, Xin Wen, Xinyu Xu

3D object detection is a critical task in autonomous driving. Recently multi-modal fusion-based 3D object detection methods, which combine the complementary advantages of LiDAR and camera, have shown great performance improvements over mono-modal methods. However, so far, no methods have attempted to utilize the instance-level contextual image semantics to guide the 3D object detection. In this paper, we propose a simple and effective Painting Adaptive Instance-prior for 3D object detection (PAI3D) to fuse instance-level image semantics flexibly with point cloud features. PAI3D is a multi-modal sequential instance-level fusion framework. It first extracts instance-level semantic information from images, the extracted information, including objects categorical label, point-to-object membership and object position, are then used to augment each LiDAR point in the subsequent 3D detection network to guide and improve detection performance. PAI3D outperforms the state-of-the-art with a large margin on the nuScenes dataset, achieving 71.4 in mAP and 74.2 in NDS on the test split. Our comprehensive experiments show that instance-level image semantics contribute the most to the performance gain, and PAI3D works well with any good-quality instance segmentation models and any modern point cloud 3D encoders, making it a strong candidate for deployment on autonomous vehicles.

  

BEVDistill: Cross-Modal BEV Distillation for Multi-View 3D Object Detection

Add code

Nov 17, 2022
Zehui Chen, Zhenyu Li, Shiquan Zhang, Liangji Fang, Qinhong Jiang, Feng Zhao

3D object detection from multiple image views is a fundamental and challenging task for visual scene understanding. Owing to its low cost and high efficiency, multi-view 3D object detection has demonstrated promising application prospects. However, accurately detecting objects through perspective views is extremely difficult due to the lack of depth information. Current approaches tend to adopt heavy backbones for image encoders, making them inapplicable for real-world deployment. Different from the images, LiDAR points are superior in providing spatial cues, resulting in highly precise localization. In this paper, we explore the incorporation of LiDAR-based detectors for multi-view 3D object detection. Instead of directly training a depth prediction network, we unify the image and LiDAR features in the Bird-Eye-View (BEV) space and adaptively transfer knowledge across non-homogenous representations in a teacher-student paradigm. To this end, we propose \textbf{BEVDistill}, a cross-modal BEV knowledge distillation (KD) framework for multi-view 3D object detection. Extensive experiments demonstrate that the proposed method outperforms current KD approaches on a highly-competitive baseline, BEVFormer, without introducing any extra cost in the inference phase. Notably, our best model achieves 59.4 NDS on the nuScenes test leaderboard, achieving new state-of-the-art in comparison with various image-based detectors. Code will be available at https://github.com/zehuichen123/BEVDistill.

  

Region Proposal Network Pre-Training Helps Label-Efficient Object Detection

Add code

Nov 16, 2022
Linus Ericsson, Nanqing Dong, Yongxin Yang, Ales Leonardis, Steven McDonagh

Self-supervised pre-training, based on the pretext task of instance discrimination, has fueled the recent advance in label-efficient object detection. However, existing studies focus on pre-training only a feature extractor network to learn transferable representations for downstream detection tasks. This leads to the necessity of training multiple detection-specific modules from scratch in the fine-tuning phase. We argue that the region proposal network (RPN), a common detection-specific module, can additionally be pre-trained towards reducing the localization error of multi-stage detectors. In this work, we propose a simple pretext task that provides an effective pre-training for the RPN, towards efficiently improving downstream object detection performance. We evaluate the efficacy of our approach on benchmark object detection tasks and additional downstream tasks, including instance segmentation and few-shot detection. In comparison with multi-stage detectors without RPN pre-training, our approach is able to consistently improve downstream task performance, with largest gains found in label-scarce settings.

* Presented at NeurIPS 2022 Workshop: Self-Supervised Learning - Theory and Practice 
  

Butterfly Effect Attack: Tiny and Seemingly Unrelated Perturbations for Object Detection

Add code

Nov 14, 2022
Nguyen Anh Vu Doan, Arda Yüksel, Chih-Hong Cheng

This work aims to explore and identify tiny and seemingly unrelated perturbations of images in object detection that will lead to performance degradation. While tininess can naturally be defined using $L_p$ norms, we characterize the degree of "unrelatedness" of an object by the pixel distance between the occurred perturbation and the object. Triggering errors in prediction while satisfying two objectives can be formulated as a multi-objective optimization problem where we utilize genetic algorithms to guide the search. The result successfully demonstrates that (invisible) perturbations on the right part of the image can drastically change the outcome of object detection on the left. An extensive evaluation reaffirms our conjecture that transformer-based object detection networks are more susceptible to butterfly effects in comparison to single-stage object detection networks such as YOLOv5.

  

Detect Only What You Specify : Object Detection with Linguistic Target

Add code

Nov 18, 2022
Moyuru Yamada

Object detection is a computer vision task of predicting a set of bounding boxes and category labels for each object of interest in a given image. The category is related to a linguistic symbol such as 'dog' or 'person' and there should be relationships among them. However the object detector only learns to classify the categories and does not treat them as the linguistic symbols. Multi-modal models often use the pre-trained object detector to extract object features from the image, but the models are separated from the detector and the extracted visual features does not change with their linguistic input. We rethink the object detection as a vision-and-language reasoning task. We then propose targeted detection task, where detection targets are given by a natural language and the goal of the task is to detect only all the target objects in a given image. There are no detection if the target is not given. Commonly used modern object detectors have many hand-designed components like anchor and it is difficult to fuse the textual inputs into the complex pipeline. We thus propose Language-Targeted Detector (LTD) for the targeted detection based on a recently proposed Transformer-based detector. LTD is a encoder-decoder architecture and our conditional decoder allows the model to reason about the encoded image with the textual input as the linguistic context. We evaluate detection performances of LTD on COCO object detection dataset and also show that our model improves the detection results with the textual input grounding to the visual object.

  
1
2
3
4
5
6
7
>>