What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Feb 10, 2025
Abstract:Accurate 3D object detection is crucial for safe autonomous navigation, requiring reliable performance across diverse weather conditions. While LiDAR performance deteriorates in challenging weather, Radar systems maintain their reliability. Traditional Radars have limitations due to their lack of elevation data, but the recent 4D Radars overcome this by measuring elevation alongside range, azimuth, and Doppler velocity, making them invaluable for autonomous vehicles. The primary challenge in utilizing 4D Radars is the sparsity of their point clouds. Previous works address this by developing architectures that better capture semantics and context in sparse point cloud, largely drawing from LiDAR-based approaches. However, these methods often overlook a unique advantage of 4D Radars: the dense Radar tensor, which encapsulates power measurements across three spatial dimensions and the Doppler dimension. Our paper leverages this tensor to tackle the sparsity issue. We introduce a novel knowledge distillation framework that enables a student model to densify its sparse input in the latent space by emulating an ensemble of teacher models. Our experiments demonstrate a 25% performance improvement over the state-of-the-art RTNH model on the K-Radar dataset. Notably, this improvement is achieved while still maintaining a real-time inference speed.
Via

Feb 10, 2025
Abstract:Autonomous drone navigation in dynamic environments remains a critical challenge, especially when dealing with unpredictable scenarios including fast-moving objects with rapidly changing goal positions. While traditional planners and classical optimisation methods have been extensively used to address this dynamic problem, they often face real-time, unpredictable changes that ultimately leads to sub-optimal performance in terms of adaptiveness and real-time decision making. In this work, we propose a novel motion planner, AgilePilot, based on Deep Reinforcement Learning (DRL) that is trained in dynamic conditions, coupled with real-time Computer Vision (CV) for object detections during flight. The training-to-deployment framework bridges the Sim2Real gap, leveraging sophisticated reward structures that promotes both safety and agility depending upon environment conditions. The system can rapidly adapt to changing environments, while achieving a maximum speed of 3.0 m/s in real-world scenarios. In comparison, our approach outperforms classical algorithms such as Artificial Potential Field (APF) based motion planner by 3 times, both in performance and tracking accuracy of dynamic targets by using velocity predictions while exhibiting 90% success rate in 75 conducted experiments. This work highlights the effectiveness of DRL in tackling real-time dynamic navigation challenges, offering intelligent safety and agility.
* Manuscript has been submitted to 2025 INTERNATIONAL CONFERENCE ON
UNMANNED AIRCRAFT SYSTEMS (ICUAS)
Via

Feb 10, 2025
Abstract:The Visually Rich Form Document Intelligence and Understanding (VRDIU) Track B focuses on the localization of key information in document images. The goal is to develop a method capable of localizing objects in both digital and handwritten documents, using only digital documents for training. This paper presents a simple yet effective approach that includes a document augmentation phase and an object detection phase. Specifically, we augment the training set of digital documents by mimicking the appearance of handwritten documents. Our experiments demonstrate that this pipeline enhances the models' generalization ability and achieves high performance in the competition.
* Accepted as a workshop paper in DOCUI-AAAI2025
Via

Feb 10, 2025
Abstract:High-voltage transmission lines are located far from the road, resulting in inconvenient inspection work and rising maintenance costs. Intelligent inspection of power transmission lines has become increasingly important. However, subsequent intelligent inspection relies on accurately detecting various key components. Due to the low detection accuracy of key components in transmission line image inspection, this paper proposed an improved object detection model based on the YOLOv5s (You Only Look Once Version 5 Small) model to improve the detection accuracy of key components of transmission lines. According to the characteristics of the power grid inspection image, we first modify the distance measurement in the k-means clustering to improve the anchor matching of the YOLOv5s model. Then, we add the convolutional block attention module (CBAM) attention mechanism to the backbone network to improve accuracy. Finally, we apply the focal loss function to reduce the impact of class imbalance. Our improved method's mAP (mean average precision) reached 98.1%, the precision reached 97.5%, the recall reached 94.4%, and the detection rate reached 84.8 FPS (frames per second). The experimental results show that our improved model improves detection accuracy and has performance advantages over other models.
* 23 pages, 14 figures
Via

Feb 10, 2025
Abstract:Active vision enables dynamic visual perception, offering an alternative to static feedforward architectures in computer vision, which rely on large datasets and high computational resources. Biological selective attention mechanisms allow agents to focus on salient Regions of Interest (ROIs), reducing computational demand while maintaining real-time responsiveness. Event-based cameras, inspired by the mammalian retina, enhance this capability by capturing asynchronous scene changes enabling efficient low-latency processing. To distinguish moving objects while the event-based camera is in motion the agent requires an object motion segmentation mechanism to accurately detect targets and center them in the visual field (fovea). Integrating event-based sensors with neuromorphic algorithms represents a paradigm shift, using Spiking Neural Networks to parallelize computation and adapt to dynamic environments. This work presents a Spiking Convolutional Neural Network bioinspired attention system for selective attention through object motion sensitivity. The system generates events via fixational eye movements using a Dynamic Vision Sensor integrated into the Speck neuromorphic hardware, mounted on a Pan-Tilt unit, to identify the ROI and saccade toward it. The system, characterized using ideal gratings and benchmarked against the Event Camera Motion Segmentation Dataset, reaches a mean IoU of 82.2% and a mean SSIM of 96% in multi-object motion segmentation. The detection of salient objects reaches 88.8% accuracy in office scenarios and 89.8% in low-light conditions on the Event-Assisted Low-Light Video Object Segmentation Dataset. A real-time demonstrator shows the system's 0.12 s response to dynamic scenes. Its learning-free design ensures robustness across perceptual scenes, making it a reliable foundation for real-time robotic applications serving as a basis for more complex architectures.
Via

Feb 10, 2025
Abstract:Self-driving cars relying solely on ego-centric perception face limitations in sensing, often failing to detect occluded, faraway objects. Collaborative autonomous driving (CAV) seems like a promising direction, but collecting data for development is non-trivial. It requires placing multiple sensor-equipped agents in a real-world driving scene, simultaneously! As such, existing datasets are limited in locations and agents. We introduce a novel surrogate to the rescue, which is to generate realistic perception from different viewpoints in a driving scene, conditioned on a real-world sample - the ego-car's sensory data. This surrogate has huge potential: it could potentially turn any ego-car dataset into a collaborative driving one to scale up the development of CAV. We present the very first solution, using a combination of simulated collaborative data and real ego-car data. Our method, Transfer Your Perspective (TYP), learns a conditioned diffusion model whose output samples are not only realistic but also consistent in both semantics and layouts with the given ego-car data. Empirical results demonstrate TYP's effectiveness in aiding in a CAV setting. In particular, TYP enables us to (pre-)train collaborative perception algorithms like early and late fusion with little or no real-world collaborative data, greatly facilitating downstream CAV applications.
Via

Feb 10, 2025
Abstract:Lung disease poses a substantial global health challenge, with pneumonia being a prevalent concern. This research focuses on leveraging deep learning techniques to detect and assess pneumonia, addressing two interconnected objectives. Initially, Convolutional Neural Network (CNN) models are introduced for pneumonia classification, emphasizing the necessity of comprehensive diagnostic assessments considering COVID-19. Subsequently, the study advocates for the utilization of deep learning-based segmentation to determine the severity of infection. This dual-pronged approach offers valuable insights for medical professionals, facilitating a more nuanced understanding and effective treatment of pneumonia. Integrating deep learning aims to elevate the accuracy and efficiency of pneumonia detection, thereby contributing to enhanced healthcare outcomes on a global scale.
Via

Feb 10, 2025
Abstract:This paper describes the problem of coordination of an autonomous Multi-Agent System which aims to solve the coverage planning problem in a complex environment. The considered applications are the detection and identification of objects of interest while covering an area. These tasks, which are highly relevant for space applications, are also of interest among various domains including the underwater context, which is the focus of this study. In this context, coverage planning is traditionally modelled as a Markov Decision Process where a coordinated MAS, a swarm of heterogeneous autonomous underwater vehicles, is required to survey an area and search for objects. This MDP is associated with several challenges: environment uncertainties, communication constraints, and an ensemble of hazards, including time-varying and unpredictable changes in the underwater environment. MARL algorithms can solve highly non-linear problems using deep neural networks and display great scalability against an increased number of agents. Nevertheless, most of the current results in the underwater domain are limited to simulation due to the high learning time of MARL algorithms. For this reason, a novel strategy is introduced to accelerate this convergence rate by incorporating biologically inspired heuristics to guide the policy during training. The PSO method, which is inspired by the behaviour of a group of animals, is selected as a heuristic. It allows the policy to explore the highest quality regions of the action and state spaces, from the beginning of the training, optimizing the exploration/exploitation trade-off. The resulting agent requires fewer interactions to reach optimal performance. The method is applied to the MSAC algorithm and evaluated for a 2D covering area mission in a continuous control environment.
* i-SAIRAS 2024 Conference
Via

Feb 10, 2025
Abstract:Recent advances in generative models enable highly realistic image manipulations, creating an urgent need for robust forgery detection methods. Current datasets for training and evaluating these methods are limited in scale and diversity. To address this, we propose a methodology for creating high-quality inpainting datasets and apply it to create DiQuID, comprising over 95,000 inpainted images generated from 78,000 original images sourced from MS-COCO, RAISE, and OpenImages. Our methodology consists of three components: (1) Semantically Aligned Object Replacement (SAOR) that identifies suitable objects through instance segmentation and generates contextually appropriate prompts, (2) Multiple Model Image Inpainting (MMII) that employs various state-of-the-art inpainting pipelines primarily based on diffusion models to create diverse manipulations, and (3) Uncertainty-Guided Deceptiveness Assessment (UGDA) that evaluates image realism through comparative analysis with originals. The resulting dataset surpasses existing ones in diversity, aesthetic quality, and technical quality. We provide comprehensive benchmarking results using state-of-the-art forgery detection methods, demonstrating the dataset's effectiveness in evaluating and improving detection algorithms. Through a human study with 42 participants on 1,000 images, we show that while humans struggle with images classified as deceiving by our methodology, models trained on our dataset maintain high performance on these challenging cases. Code and dataset are available at https://github.com/mever-team/DiQuID.
Via

Feb 09, 2025
Abstract:Anomaly event detection plays a crucial role in various real-world applications. However, current approaches predominantly rely on supervised learning, which faces significant challenges: the requirement for extensive labeled training data and lack of interpretability in decision-making processes. To address these limitations, we present a training-free framework that integrates open-set object detection with symbolic regression, powered by Large Language Models (LLMs) for efficient symbolic pattern discovery. The LLMs guide the symbolic reasoning process, establishing logical relationships between detected entities. Through extensive experiments across multiple domains, our framework demonstrates several key advantages: (1) achieving superior detection accuracy through direct reasoning without any training process; (2) providing highly interpretable logical expressions that are readily comprehensible to humans; and (3) requiring minimal annotation effort - approximately 1% of the data needed by traditional training-based methods.To facilitate comprehensive evaluation and future research, we introduce two datasets: a large-scale private dataset containing over 110,000 annotated images covering various anomaly scenarios including construction site safety violations, illegal fishing activities, and industrial hazards, along with a public benchmark dataset of 5,000 samples with detailed anomaly event annotations. Code is available at here.
* 11 pages, 4 figures
Via
