Alert button

"Object Detection": models, code, and papers
Alert button

Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection

Dec 05, 2023
Cheng-Ju Ho, Chen-Hsuan Tai, Yen-Yu Lin, Ming-Hsuan Yang, Yi-Hsuan Tsai

Semi-supervised object detection is crucial for 3D scene understanding, efficiently addressing the limitation of acquiring large-scale 3D bounding box annotations. Existing methods typically employ a teacher-student framework with pseudo-labeling to leverage unlabeled point clouds. However, producing reliable pseudo-labels in a diverse 3D space still remains challenging. In this work, we propose Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection. Specifically, we include noises to produce corrupted 3D object size and class label distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs. Moreover, we integrate the diffusion model into the teacher-student framework, so that the denoised bounding boxes can be used to improve pseudo-label generation, as well as the entire semi-supervised learning process. We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods. We also present extensive analysis to understand how our diffusion model design affects performance in semi-supervised learning.

* Accepted in NeurIPS 2023. Code is available at https://github.com/luluho1208/Diffusion-SS3D 
Viaarxiv icon

TIDE: Test Time Few Shot Object Detection

Nov 30, 2023
Weikai Li, Hongfeng Wei, Yanlai Wu, Jie Yang, Yudi Ruan, Yuan Li, Ying Tang

Few-shot object detection (FSOD) aims to extract semantic knowledge from limited object instances of novel categories within a target domain. Recent advances in FSOD focus on fine-tuning the base model based on a few objects via meta-learning or data augmentation. Despite their success, the majority of them are grounded with parametric readjustment to generalize on novel objects, which face considerable challenges in Industry 5.0, such as (i) a certain amount of fine-tuning time is required, and (ii) the parameters of the constructed model being unavailable due to the privilege protection, making the fine-tuning fail. Such constraints naturally limit its application in scenarios with real-time configuration requirements or within black-box settings. To tackle the challenges mentioned above, we formalize a novel FSOD task, referred to as Test TIme Few Shot DEtection (TIDE), where the model is un-tuned in the configuration procedure. To that end, we introduce an asymmetric architecture for learning a support-instance-guided dynamic category classifier. Further, a cross-attention module and a multi-scale resizer are provided to enhance the model performance. Experimental results on multiple few-shot object detection platforms reveal that the proposed TIDE significantly outperforms existing contemporary methods. The implementation codes are available at https://github.com/deku-0621/TIDE

Viaarxiv icon

Feedback RoI Features Improve Aerial Object Detection

Nov 28, 2023
Botao Ren, Botian Xu, Tengyu Liu, Jingyi Wang, Zhidong Deng

Neuroscience studies have shown that the human visual system utilizes high-level feedback information to guide lower-level perception, enabling adaptation to signals of different characteristics. In light of this, we propose Feedback multi-Level feature Extractor (Flex) to incorporate a similar mechanism for object detection. Flex refines feature selection based on image-wise and instance-level feedback information in response to image quality variation and classification uncertainty. Experimental results show that Flex offers consistent improvement to a range of existing SOTA methods on the challenging aerial object detection datasets including DOTA-v1.0, DOTA-v1.5, and HRSC2016. Although the design originates in aerial image detection, further experiments on MS COCO also reveal our module's efficacy in general detection models. Quantitative and qualitative analyses indicate that the improvements are closely related to image qualities, which match our motivation.

Viaarxiv icon

Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

Dec 02, 2023
Zhipeng Du, Miaojing Shi, Jiankang Deng

Detecting objects in low-light scenarios presents a persistent challenge, as detectors trained on well-lit data exhibit significant performance degradation on low-light data due to the low visibility. Previous methods mitigate this issue by investigating image enhancement or object detection techniques using low-light image datasets. However, the progress is impeded by the inherent difficulties associated with collecting and annotating low-light images. To address this challenge, we propose to boost low-light object detection with zero-shot day-night domain adaptation, which aims to generalize a detector from well-lit scenarios to low-light ones without requiring real low-light data. We first design a reflectance representation learning module to learn Retinex-based illumination invariance in images with a carefully designed illumination invariance reinforcement strategy. Next, an interchange-redecomposition-coherence procedure is introduced to improve over the vanilla Retinex image decomposition process by performing two sequential image decompositions and introducing a redecomposition cohering loss. Extensive experiments on ExDark, DARK FACE and CODaN datasets show strong low-light generalizability of our method.

Viaarxiv icon

BEVNeXt: Reviving Dense BEV Frameworks for 3D Object Detection

Dec 04, 2023
Zhenxin Li, Shiyi Lan, Jose M. Alvarez, Zuxuan Wu

Recently, the rise of query-based Transformer decoders is reshaping camera-based 3D object detection. These query-based decoders are surpassing the traditional dense BEV (Bird's Eye View)-based methods. However, we argue that dense BEV frameworks remain important due to their outstanding abilities in depth estimation and object localization, depicting 3D scenes accurately and comprehensively. This paper aims to address the drawbacks of the existing dense BEV-based 3D object detectors by introducing our proposed enhanced components, including a CRF-modulated depth estimation module enforcing object-level consistencies, a long-term temporal aggregation module with extended receptive fields, and a two-stage object decoder combining perspective techniques with CRF-modulated depth embedding. These enhancements lead to a "modernized" dense BEV framework dubbed BEVNeXt. On the nuScenes benchmark, BEVNeXt outperforms both BEV-based and query-based frameworks under various settings, achieving a state-of-the-art result of 64.2 NDS on the nuScenes test set.

Viaarxiv icon

Revisiting Proposal-based Object Detection

Nov 30, 2023
Aritra Bhowmik, Martin R. Oswald, Pascal Mettes, Cees G. M. Snoek

This paper revisits the pipeline for detecting objects in images with proposals. For any object detector, the obtained box proposals or queries need to be classified and regressed towards ground truth boxes. The common solution for the final predictions is to directly maximize the overlap between each proposal and the ground truth box, followed by a winner-takes-all ranking or non-maximum suppression. In this work, we propose a simple yet effective alternative. For proposal regression, we solve a simpler problem where we regress to the area of intersection between proposal and ground truth. In this way, each proposal only specifies which part contains the object, avoiding a blind inpainting problem where proposals need to be regressed beyond their visual scope. In turn, we replace the winner-takes-all strategy and obtain the final prediction by taking the union over the regressed intersections of a proposal group surrounding an object. Our revisited approach comes with minimal changes to the detection pipeline and can be plugged into any existing method. We show that our approach directly improves canonical object detection and instance segmentation architectures, highlighting the utility of intersection-based regression and grouping.

* 10 pages, 7 figures 
Viaarxiv icon

Enhancing Novel Object Detection via Cooperative Foundational Models

Nov 22, 2023
Rohit Bharadwaj, Muzammal Naseer, Salman Khan, Fahad Shahbaz Khan

In this work, we address the challenging and emergent problem of novel object detection (NOD), focusing on the accurate detection of both known and novel object categories during inference. Traditional object detection algorithms are inherently closed-set, limiting their capability to handle NOD. We present a novel approach to transform existing closed-set detectors into open-set detectors. This transformation is achieved by leveraging the complementary strengths of pre-trained foundational models, specifically CLIP and SAM, through our cooperative mechanism. Furthermore, by integrating this mechanism with state-of-the-art open-set detectors such as GDINO, we establish new benchmarks in object detection performance. Our method achieves 17.42 mAP in novel object detection and 42.08 mAP for known objects on the challenging LVIS dataset. Adapting our approach to the COCO OVD split, we surpass the current state-of-the-art by a margin of 7.2 $ \text{AP}_{50} $ for novel classes. Our code is available at https://github.com/rohit901/cooperative-foundational-models .

* Code: https://github.com/rohit901/cooperative-foundational-models 
Viaarxiv icon

Learning Pseudo-Labeler beyond Noun Concepts for Open-Vocabulary Object Detection

Dec 04, 2023
Sunghun Kang, Junbum Cha, Jonghwan Mun, Byungseok Roh, Chang D. Yoo

Open-vocabulary object detection (OVOD) has recently gained significant attention as a crucial step toward achieving human-like visual intelligence. Existing OVOD methods extend target vocabulary from pre-defined categories to open-world by transferring knowledge of arbitrary concepts from vision-language pre-training models to the detectors. While previous methods have shown remarkable successes, they suffer from indirect supervision or limited transferable concepts. In this paper, we propose a simple yet effective method to directly learn region-text alignment for arbitrary concepts. Specifically, the proposed method aims to learn arbitrary image-to-text mapping for pseudo-labeling of arbitrary concepts, named Pseudo-Labeling for Arbitrary Concepts (PLAC). The proposed method shows competitive performance on the standard OVOD benchmark for noun concepts and a large improvement on referring expression comprehension benchmark for arbitrary concepts.

Viaarxiv icon

LEOD: Label-Efficient Object Detection for Event Cameras

Nov 29, 2023
Ziyi Wu, Mathias Gehrig, Qing Lyu, Xudong Liu, Igor Gilitschenski

Object detection with event cameras enjoys the property of low latency and high dynamic range, making it suitable for safety-critical scenarios such as self-driving. However, labeling event streams with high temporal resolutions for supervised training is costly. We address this issue with LEOD, the first framework for label-efficient event-based detection. Our method unifies weakly- and semi-supervised object detection with a self-training mechanism. We first utilize a detector pre-trained on limited labels to produce pseudo ground truth on unlabeled events, and then re-train the detector with both real and generated labels. Leveraging the temporal consistency of events, we run bi-directional inference and apply tracking-based post-processing to enhance the quality of pseudo labels. To stabilize training, we further design a soft anchor assignment strategy to mitigate the noise in labels. We introduce new experimental protocols to evaluate the task of label-efficient event-based detection on Gen1 and 1Mpx datasets. LEOD consistently outperforms supervised baselines across various labeling ratios. For example, on Gen1, it improves mAP by 8.6% and 7.8% for RVT-S trained with 1% and 2% labels. On 1Mpx, RVT-S with 10% labels even surpasses its fully-supervised counterpart using 100% labels. LEOD maintains its effectiveness even when all labeled data are available, reaching new state-of-the-art results. Finally, we show that our method readily scales to improve larger detectors as well.

Viaarxiv icon