Alert button

"Object Detection": models, code, and papers
Alert button

What Can Human Sketches Do for Object Detection?

Mar 27, 2023
Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan Sain, Subhadeep Koley, Tao Xiang, Yi-Zhe Song

Sketches are highly expressive, inherently capturing subjective and fine-grained visual cues. The exploration of such innate properties of human sketches has, however, been limited to that of image retrieval. In this paper, for the first time, we cultivate the expressiveness of sketches but for the fundamental vision task of object detection. The end result is a sketch-enabled object detection framework that detects based on what \textit{you} sketch -- \textit{that} ``zebra'' (e.g., one that is eating the grass) in a herd of zebras (instance-aware detection), and only the \textit{part} (e.g., ``head" of a ``zebra") that you desire (part-aware detection). We further dictate that our model works without (i) knowing which category to expect at testing (zero-shot) and (ii) not requiring additional bounding boxes (as per fully supervised) and class labels (as per weakly supervised). Instead of devising a model from the ground up, we show an intuitive synergy between foundation models (e.g., CLIP) and existing sketch models build for sketch-based image retrieval (SBIR), which can already elegantly solve the task -- CLIP to provide model generalisation, and SBIR to bridge the (sketch$\rightarrow$photo) gap. In particular, we first perform independent prompting on both sketch and photo branches of an SBIR model to build highly generalisable sketch and photo encoders on the back of the generalisation ability of CLIP. We then devise a training paradigm to adapt the learned encoders for object detection, such that the region embeddings of detected boxes are aligned with the sketch and photo embeddings from SBIR. Evaluating our framework on standard object detection datasets like PASCAL-VOC and MS-COCO outperforms both supervised (SOD) and weakly-supervised object detectors (WSOD) on zero-shot setups. Project Page: \url{}

* Accepted as Top 12 Best Papers. Will be presented in special single-track plenary sessions to all attendees in Computer Vision and Pattern Recognition (CVPR), 2023. Project Page: 

A novel Multi to Single Module for small object detection

Mar 27, 2023
Xiaohui Guo

Small object detection presents a significant challenge in computer vision and object detection. The performance of small object detectors is often compromised by a lack of pixels and less significant features. This issue stems from information misalignment caused by variations in feature scale and information loss during feature processing. In response to this challenge, this paper proposes a novel the Multi to Single Module (M2S), which enhances a specific layer through improving feature extraction and refining features. Specifically, M2S includes the proposed Cross-scale Aggregation Module (CAM) and explored Dual Relationship Module (DRM) to improve information extraction capabilities and feature refinement effects. Moreover, this paper enhances the accuracy of small object detection by utilizing M2S to generate an additional detection head. The effectiveness of the proposed method is evaluated on two datasets, VisDrone2021-DET and SeaDronesSeeV2. The experimental results demonstrate its improved performance compared with existing methods. Compared to the baseline model (YOLOv5s), M2S improves the accuracy by about 1.1\% on the VisDrone2021-DET testing dataset and 15.68\% on the SeaDronesSeeV2 validation set.

Viewpoint Equivariance for Multi-View 3D Object Detection

Mar 25, 2023
Dian Chen, Jie Li, Vitor Guizilini, Rares Ambrus, Adrien Gaidon

3D object detection from visual sensors is a cornerstone capability of robotic systems. State-of-the-art methods focus on reasoning and decoding object bounding boxes from multi-view camera input. In this work we gain intuition from the integral role of multi-view consistency in 3D scene understanding and geometric learning. To this end, we introduce VEDet, a novel 3D object detection framework that exploits 3D multi-view geometry to improve localization through viewpoint awareness and equivariance. VEDet leverages a query-based transformer architecture and encodes the 3D scene by augmenting image features with positional encodings from their 3D perspective geometry. We design view-conditioned queries at the output level, which enables the generation of multiple virtual frames during training to learn viewpoint equivariance by enforcing multi-view consistency. The multi-view geometry injected at the input level as positional encodings and regularized at the loss level provides rich geometric cues for 3D object detection, leading to state-of-the-art performance on the nuScenes benchmark. The code and model are made available at

* 11 pages, 4 figures; accepted to CVPR 2023 

3D Video Object Detection with Learnable Object-Centric Global Optimization

Mar 27, 2023
Jiawei He, Yuntao Chen, Naiyan Wang, Zhaoxiang Zhang

We explore long-term temporal visual correspondence-based optimization for 3D video object detection in this work. Visual correspondence refers to one-to-one mappings for pixels across multiple images. Correspondence-based optimization is the cornerstone for 3D scene reconstruction but is less studied in 3D video object detection, because moving objects violate multi-view geometry constraints and are treated as outliers during scene reconstruction. We address this issue by treating objects as first-class citizens during correspondence-based optimization. In this work, we propose BA-Det, an end-to-end optimizable object detector with object-centric temporal correspondence learning and featuremetric object bundle adjustment. Empirically, we verify the effectiveness and efficiency of BA-Det for multiple baseline 3D detectors under various setups. Our BA-Det achieves SOTA performance on the large-scale Waymo Open Dataset (WOD) with only marginal computation cost. Our code is available at

* CVPR2023 

Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers

Mar 26, 2023
Zhou Huang, Hang Dai, Tian-Zhu Xiang, Shuo Wang, Huai-Xin Chen, Jie Qin, Huan Xiong

Vision transformers have recently shown strong global context modeling capabilities in camouflaged object detection. However, they suffer from two major limitations: less effective locality modeling and insufficient feature aggregation in decoders, which are not conducive to camouflaged object detection that explores subtle cues from indistinguishable backgrounds. To address these issues, in this paper, we propose a novel transformer-based Feature Shrinkage Pyramid Network (FSPNet), which aims to hierarchically decode locality-enhanced neighboring transformer features through progressive shrinking for camouflaged object detection. Specifically, we propose a nonlocal token enhancement module (NL-TEM) that employs the non-local mechanism to interact neighboring tokens and explore graph-based high-order relations within tokens to enhance local representations of transformers. Moreover, we design a feature shrinkage decoder (FSD) with adjacent interaction modules (AIM), which progressively aggregates adjacent transformer features through a layer-bylayer shrinkage pyramid to accumulate imperceptible but effective cues as much as possible for object information decoding. Extensive quantitative and qualitative experiments demonstrate that the proposed model significantly outperforms the existing 24 competitors on three challenging COD benchmark datasets under six widely-used evaluation metrics. Our code is publicly available at

* CVPR 2023. Project webpage at: 

Transformer-based Multi-Instance Learning for Weakly Supervised Object Detection

Mar 27, 2023
Zhaofei Wang, Weijia Zhang, Min-Ling Zhang

Weakly Supervised Object Detection (WSOD) enables the training of object detection models using only image-level annotations. State-of-the-art WSOD detectors commonly rely on multi-instance learning (MIL) as the backbone of their detectors and assume that the bounding box proposals of an image are independent of each other. However, since such approaches only utilize the highest score proposal and discard the potentially useful information from other proposals, their independent MIL backbone often limits models to salient parts of an object or causes them to detect only one object per class. To solve the above problems, we propose a novel backbone for WSOD based on our tailored Vision Transformer named Weakly Supervised Transformer Detection Network (WSTDN). Our algorithm is not only the first to demonstrate that self-attention modules that consider inter-instance relationships are effective backbones for WSOD, but also we introduce a novel bounding box mining method (BBM) integrated with a memory transfer refinement (MTR) procedure to utilize the instance dependencies for facilitating instance refinements. Experimental results on PASCAL VOC2007 and VOC2012 benchmarks demonstrate the effectiveness of our proposed WSTDN and modified instance refinement modules.

Addressing the Challenges of Open-World Object Detection

Mar 27, 2023
David Pershouse, Feras Dayoub, Dimity Miller, Niko Sünderhauf

We address the challenging problem of open world object detection (OWOD), where object detectors must identify objects from known classes while also identifying and continually learning to detect novel objects. Prior work has resulted in detectors that have a relatively low ability to detect novel objects, and a high likelihood of classifying a novel object as one of the known classes. We approach the problem by identifying the three main challenges that OWOD presents and introduce OW-RCNN, an open world object detector that addresses each of these three challenges. OW-RCNN establishes a new state of the art using the open-world evaluation protocol on MS-COCO, showing a drastically increased ability to detect novel objects (16-21% absolute increase in U-Recall), to avoid their misclassification as one of the known classes (up to 52% reduction in A-OSE), and to incrementally learn to detect them while maintaining performance on previously known classes (1-6% absolute increase in mAP).

Multi-Semantic Interactive Learning for Object Detection

Mar 18, 2023
Shuxin Wang, Zhichao Zheng, Yanhui Gu, Junsheng Zhou, Yi Chen

Figure 1 for Multi-Semantic Interactive Learning for Object Detection
Figure 2 for Multi-Semantic Interactive Learning for Object Detection
Figure 3 for Multi-Semantic Interactive Learning for Object Detection
Figure 4 for Multi-Semantic Interactive Learning for Object Detection

Single-branch object detection methods use shared features for localization and classification, yet the shared features are not fit for the two different tasks simultaneously. Multi-branch object detection methods usually use different features for localization and classification separately, ignoring the relevance between different tasks. Therefore, we propose multi-semantic interactive learning (MSIL) to mine the semantic relevance between different branches and extract multi-semantic enhanced features of objects. MSIL first performs semantic alignment of regression and classification branches, then merges the features of different branches by semantic fusion, finally extracts relevant information by semantic separation and passes it back to the regression and classification branches respectively. More importantly, MSIL can be integrated into existing object detection nets as a plug-and-play component. Experiments on the MS COCO, and Pascal VOC datasets show that the integration of MSIL with existing algorithms can utilize the relevant information between semantics of different tasks and achieve better performance.

Rethinking the backbone architecture for tiny object detection

Mar 20, 2023
Jinlai Ning, Haoyan Guan, Michael Spratling

Figure 1 for Rethinking the backbone architecture for tiny object detection
Figure 2 for Rethinking the backbone architecture for tiny object detection
Figure 3 for Rethinking the backbone architecture for tiny object detection
Figure 4 for Rethinking the backbone architecture for tiny object detection

Tiny object detection has become an active area of research because images with tiny targets are common in several important real-world scenarios. However, existing tiny object detection methods use standard deep neural networks as their backbone architecture. We argue that such backbones are inappropriate for detecting tiny objects as they are designed for the classification of larger objects, and do not have the spatial resolution to identify small targets. Specifically, such backbones use max-pooling or a large stride at early stages in the architecture. This produces lower resolution feature-maps that can be efficiently processed by subsequent layers. However, such low-resolution feature-maps do not contain information that can reliably discriminate tiny objects. To solve this problem we design 'bottom-heavy' versions of backbones that allocate more resources to processing higher-resolution features without introducing any additional computational burden overall. We also investigate if pre-training these backbones on images of appropriate size, using CIFAR100 and ImageNet32, can further improve performance on tiny object detection. Results on TinyPerson and WiderFace show that detectors with our proposed backbones achieve better results than the current state-of-the-art methods.

* In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP2023, pages 103-114  

Learned Two-Plane Perspective Prior based Image Resampling for Efficient Object Detection

Mar 25, 2023
Anurag Ghosh, N. Dinesh Reddy, Christoph Mertz, Srinivasa G. Narasimhan

Real-time efficient perception is critical for autonomous navigation and city scale sensing. Orthogonal to architectural improvements, streaming perception approaches have exploited adaptive sampling improving real-time detection performance. In this work, we propose a learnable geometry-guided prior that incorporates rough geometry of the 3D scene (a ground plane and a plane above) to resample images for efficient object detection. This significantly improves small and far-away object detection performance while also being more efficient both in terms of latency and memory. For autonomous navigation, using the same detector and scale, our approach improves detection rate by +4.1 $AP_{S}$ or +39% and in real-time performance by +5.3 $sAP_{S}$ or +63% for small objects over state-of-the-art (SOTA). For fixed traffic cameras, our approach detects small objects at image scales other methods cannot. At the same scale, our approach improves detection of small objects by 195% (+12.5 $AP_{S}$) over naive-downsampling and 63% (+4.2 $AP_{S}$) over SOTA.

* CVPR 2023 Accepted Paper, 21 pages, 16 Figures