Facial optical flow supports a wide range of tasks in facial motion analysis. However, the lack of high-resolution facial optical flow datasets has hindered progress in this area. In this paper, we introduce Splatting Rasterization Flow (SRFlow), a high-resolution facial optical flow dataset, and Splatting Rasterization Guided FlowNet (SRFlowNet), a facial optical flow model with tailored regularization losses. These losses constrain flow predictions using masks and gradients computed via difference or Sobel operator. This effectively suppresses high-frequency noise and large-scale errors in texture-less or repetitive-pattern regions, enabling SRFlowNet to be the first model explicitly capable of capturing high-resolution skin motion guided by Gaussian splatting rasterization. Experiments show that training with the SRFlow dataset improves facial optical flow estimation across various optical flow models, reducing end-point error (EPE) by up to 42% (from 0.5081 to 0.2953). Furthermore, when coupled with the SRFlow dataset, SRFlowNet achieves up to a 48% improvement in F1-score (from 0.4733 to 0.6947) on a composite of three micro-expression datasets. These results demonstrate the value of advancing both facial optical flow estimation and micro-expression recognition.




Micro expression recognition (MER) is crucial for inferring genuine emotion. Applying a multimodal large language model (MLLM) to this task enables spatio-temporal analysis of facial motion and provides interpretable descriptions. However, there are still two core challenges: (1) The entanglement of static appearance and dynamic motion cues prevents the model from focusing on subtle motion; (2) Textual labels in existing MER datasets do not fully correspond to underlying facial muscle movements, creating a semantic gap between text supervision and physical motion. To address these issues, we propose DEFT-LLM, which achieves motion semantic alignment by multi-expert disentanglement. We first introduce Uni-MER, a motion-driven instruction dataset designed to align text with local facial motion. Its construction leverages dual constraints from optical flow and Action Unit (AU) labels to ensure spatio-temporal consistency and reasonable correspondence to the movements. We then design an architecture with three experts to decouple facial dynamics into independent and interpretable representations (structure, dynamic textures, and motion-semantics). By integrating the instruction-aligned knowledge from Uni-MER into DEFT-LLM, our method injects effective physical priors for micro expressions while also leveraging the cross modal reasoning ability of large language models, thus enabling precise capture of subtle emotional cues. Experiments on multiple challenging MER benchmarks demonstrate state-of-the-art performance, as well as a particular advantage in interpretable modeling of local facial motion.




Facial micro-expressions, characterized by their subtle and brief nature, are valuable indicators of genuine emotions. Despite their significance in psychology, security, and behavioral analysis, micro-expression recognition remains challenging due to the difficulty of capturing subtle facial movements. Optical flow has been widely employed as an input modality for this task due to its effectiveness. However, most existing methods compute optical flow only between the onset and apex frames, thereby overlooking essential motion information in the apex-to-offset phase. To address this limitation, we first introduce a comprehensive motion representation, termed Magnitude-Modulated Combined Optical Flow (MM-COF), which integrates motion dynamics from both micro-expression phases into a unified descriptor suitable for direct use in recognition networks. Building upon this principle, we then propose FMANet, a novel end-to-end neural network architecture that internalizes the dual-phase analysis and magnitude modulation into learnable modules. This allows the network to adaptively fuse motion cues and focus on salient facial regions for classification. Experimental evaluations on the MMEW, SMIC, CASME-II, and SAMM datasets, widely recognized as standard benchmarks, demonstrate that our proposed MM-COF representation and FMANet outperforms existing methods, underscoring the potential of a learnable, dual-phase framework in advancing micro-expression recognition.




Micro-expressions (MEs) are brief, low-intensity, often localized facial expressions. They could reveal genuine emotions individuals may attempt to conceal, valuable in contexts like criminal interrogation and psychological counseling. However, ME recognition (MER) faces challenges, such as small sample sizes and subtle features, which hinder efficient modeling. Additionally, real-world applications encounter ME data privacy issues, leaving the task of enhancing recognition across settings under privacy constraints largely unexplored. To address these issues, we propose a FED-PsyAU research framework. We begin with a psychological study on the coordination of upper and lower facial action units (AUs) to provide structured prior knowledge of facial muscle dynamics. We then develop a DPK-GAT network that combines these psychological priors with statistical AU patterns, enabling hierarchical learning of facial motion features from regional to global levels, effectively enhancing MER performance. Additionally, our federated learning framework advances MER capabilities across multiple clients without data sharing, preserving privacy and alleviating the limited-sample issue for each client. Extensive experiments on commonly-used ME databases demonstrate the effectiveness of our approach.
Micro-expression recognition (MER), a critical subfield of affective computing, presents greater challenges than macro-expression recognition due to its brief duration and low intensity. While incorporating prior knowledge has been shown to enhance MER performance, existing methods predominantly rely on simplistic, singular sources of prior knowledge, failing to fully exploit multi-source information. This paper introduces the Multi-Prior Fusion Network (MPFNet), leveraging a progressive training strategy to optimize MER tasks. We propose two complementary encoders: the Generic Feature Encoder (GFE) and the Advanced Feature Encoder (AFE), both based on Inflated 3D ConvNets (I3D) with Coordinate Attention (CA) mechanisms, to improve the model's ability to capture spatiotemporal and channel-specific features. Inspired by developmental psychology, we present two variants of MPFNet--MPFNet-P and MPFNet-C--corresponding to two fundamental modes of infant cognitive development: parallel and hierarchical processing. These variants enable the evaluation of different strategies for integrating prior knowledge. Extensive experiments demonstrate that MPFNet significantly improves MER accuracy while maintaining balanced performance across categories, achieving accuracies of 0.811, 0.924, and 0.857 on the SMIC, CASME II, and SAMM datasets, respectively. To the best of our knowledge, our approach achieves state-of-the-art performance on the SMIC and SAMM datasets.
Micro-expressions (MEs) are regarded as important indicators of an individual's intrinsic emotions, preferences, and tendencies. ME analysis requires spotting of ME intervals within long video sequences and recognition of their corresponding emotional categories. Previous deep learning approaches commonly employ sliding-window classification networks. However, the use of fixed window lengths and hard classification presents notable limitations in practice. Furthermore, these methods typically treat ME spotting and recognition as two separate tasks, overlooking the essential relationship between them. To address these challenges, this paper proposes two state space model-based architectures, namely ME-TST and ME-TST+, which utilize temporal state transition mechanisms to replace conventional window-level classification with video-level regression. This enables a more precise characterization of the temporal dynamics of MEs and supports the modeling of MEs with varying durations. In ME-TST+, we further introduce multi-granularity ROI modeling and the slowfast Mamba framework to alleviate information loss associated with treating ME analysis as a time-series task. Additionally, we propose a synergy strategy for spotting and recognition at both the feature and result levels, leveraging their intrinsic connection to enhance overall analysis performance. Extensive experiments demonstrate that the proposed methods achieve state-of-the-art performance. The codes are available at https://github.com/zizheng-guo/ME-TST.




Facial expression recognition (FER) in 3D and 4D domains presents a significant challenge in affective computing due to the complexity of spatial and temporal facial dynamics. Its success is crucial for advancing applications in human behavior understanding, healthcare monitoring, and human-computer interaction. In this work, we propose FACET-VLM, a vision-language framework for 3D/4D FER that integrates multiview facial representation learning with semantic guidance from natural language prompts. FACET-VLM introduces three key components: Cross-View Semantic Aggregation (CVSA) for view-consistent fusion, Multiview Text-Guided Fusion (MTGF) for semantically aligned facial emotions, and a multiview consistency loss to enforce structural coherence across views. Our model achieves state-of-the-art accuracy across multiple benchmarks, including BU-3DFE, Bosphorus, BU-4DFE, and BP4D-Spontaneous. We further extend FACET-VLM to 4D micro-expression recognition (MER) on the 4DME dataset, demonstrating strong performance in capturing subtle, short-lived emotional cues. The extensive experimental results confirm the effectiveness and substantial contributions of each individual component within the framework. Overall, FACET-VLM offers a robust, extensible, and high-performing solution for multimodal FER in both posed and spontaneous settings.
Micro-expressions (MEs) are involuntary, low-intensity, and short-duration facial expressions that often reveal an individual's genuine thoughts and emotions. Most existing ME analysis methods rely on window-level classification with fixed window sizes and hard decisions, which limits their ability to capture the complex temporal dynamics of MEs. Although recent approaches have adopted video-level regression frameworks to address some of these challenges, interval decoding still depends on manually predefined, window-based methods, leaving the issue only partially mitigated. In this paper, we propose a prior-guided video-level regression method for ME analysis. We introduce a scalable interval selection strategy that comprehensively considers the temporal evolution, duration, and class distribution characteristics of MEs, enabling precise spotting of the onset, apex, and offset phases. In addition, we introduce a synergistic optimization framework, in which the spotting and recognition tasks share parameters except for the classification heads. This fully exploits complementary information, makes more efficient use of limited data, and enhances the model's capability. Extensive experiments on multiple benchmark datasets demonstrate the state-of-the-art performance of our method, with an STRS of 0.0562 on CAS(ME)$^3$ and 0.2000 on SAMMLV. The code is available at https://github.com/zizheng-guo/BoostingVRME.
Event-based eye tracking holds significant promise for fine-grained cognitive state inference, offering high temporal resolution and robustness to motion artifacts, critical features for decoding subtle mental states such as attention, confusion, or fatigue. In this work, we introduce a model-agnostic, inference-time refinement framework designed to enhance the output of existing event-based gaze estimation models without modifying their architecture or requiring retraining. Our method comprises two key post-processing modules: (i) Motion-Aware Median Filtering, which suppresses blink-induced spikes while preserving natural gaze dynamics, and (ii) Optical Flow-Based Local Refinement, which aligns gaze predictions with cumulative event motion to reduce spatial jitter and temporal discontinuities. To complement traditional spatial accuracy metrics, we propose a novel Jitter Metric that captures the temporal smoothness of predicted gaze trajectories based on velocity regularity and local signal complexity. Together, these contributions significantly improve the consistency of event-based gaze signals, making them better suited for downstream tasks such as micro-expression analysis and mind-state decoding. Our results demonstrate consistent improvements across multiple baseline models on controlled datasets, laying the groundwork for future integration with multimodal affect recognition systems in real-world environments.




Facial micro-expression recognition (MER) is a challenging problem, due to transient and subtle micro-expression (ME) actions. Most existing methods depend on hand-crafted features, key frames like onset, apex, and offset frames, or deep networks limited by small-scale and low-diversity datasets. In this paper, we propose an end-to-end micro-action-aware deep learning framework with advantages from transformer, graph convolution, and vanilla convolution. In particular, we propose a novel F5C block composed of fully-connected convolution and channel correspondence convolution to directly extract local-global features from a sequence of raw frames, without the prior knowledge of key frames. The transformer-style fully-connected convolution is proposed to extract local features while maintaining global receptive fields, and the graph-style channel correspondence convolution is introduced to model the correlations among feature patterns. Moreover, MER, optical flow estimation, and facial landmark detection are jointly trained by sharing the local-global features. The two latter tasks contribute to capturing facial subtle action information for MER, which can alleviate the impact of insufficient training data. Extensive experiments demonstrate that our framework (i) outperforms the state-of-the-art MER methods on CASME II, SAMM, and SMIC benchmarks, (ii) works well for optical flow estimation and facial landmark detection, and (iii) can capture facial subtle muscle actions in local regions associated with MEs. The code is available at https://github.com/CYF-cuber/MOL.