Topic:Line Segment Detection
What is Line Segment Detection? Line segment detection is the process of identifying straight lines in an image or video.
Papers and Code
Apr 15, 2025
Abstract:Live tracking of wildlife via high-resolution video processing directly onboard drones is widely unexplored and most existing solutions rely on streaming video to ground stations to support navigation. Yet, both autonomous animal-reactive flight control beyond visual line of sight and/or mission-specific individual and behaviour recognition tasks rely to some degree on this capability. In response, we introduce WildLive -- a near real-time animal detection and tracking framework for high-resolution imagery running directly onboard uncrewed aerial vehicles (UAVs). The system performs multi-animal detection and tracking at 17fps+ for HD and 7fps+ on 4K video streams suitable for operation during higher altitude flights to minimise animal disturbance. Our system is optimised for Jetson Orin AGX onboard hardware. It integrates the efficiency of sparse optical flow tracking and mission-specific sampling with device-optimised and proven YOLO-driven object detection and segmentation techniques. Essentially, computational resource is focused onto spatio-temporal regions of high uncertainty to significantly improve UAV processing speeds without domain-specific loss of accuracy. Alongside, we introduce our WildLive dataset, which comprises 200k+ annotated animal instances across 19k+ frames from 4K UAV videos collected at the Ol Pejeta Conservancy in Kenya. All frames contain ground truth bounding boxes, segmentation masks, as well as individual tracklets and tracking point trajectories. We compare our system against current object tracking approaches including OC-SORT, ByteTrack, and SORT. Our materials are available at: https://dat-nguyenvn.github.io/WildLive/
Via

Apr 09, 2025
Abstract:Precise optical inspection in industrial applications is crucial for minimizing scrap rates and reducing the associated costs. Besides merely detecting if a product is anomalous or not, it is crucial to know the distinct type of defect, such as a bent, cut, or scratch. The ability to recognize the "exact" defect type enables automated treatments of the anomalies in modern production lines. Current methods are limited to solely detecting whether a product is defective or not without providing any insights on the defect type, nevertheless detecting and identifying multiple defects. We propose MultiADS, a zero-shot learning approach, able to perform Multi-type Anomaly Detection and Segmentation. The architecture of MultiADS comprises CLIP and extra linear layers to align the visual- and textual representation in a joint feature space. To the best of our knowledge, our proposal, is the first approach to perform a multi-type anomaly segmentation task in zero-shot learning. Contrary to the other baselines, our approach i) generates specific anomaly masks for each distinct defect type, ii) learns to distinguish defect types, and iii) simultaneously identifies multiple defect types present in an anomalous product. Additionally, our approach outperforms zero/few-shot learning SoTA methods on image-level and pixel-level anomaly detection and segmentation tasks on five commonly used datasets: MVTec-AD, Visa, MPDD, MAD and Real-IAD.
Via

Apr 11, 2025
Abstract:Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.
* Website: https://video-msg.github.io; The first three authors
contributed equally
Via

Feb 25, 2025
Abstract:Classical Transformer-based line segment detection methods have delivered impressive results. However, we observe that some accurately detected line segments are assigned low confidence scores during prediction, causing them to be ranked lower and potentially suppressed. Additionally, these models often require prolonged training periods to achieve strong performance, largely due to the necessity of bipartite matching. In this paper, we introduce RANK-LETR, a novel Transformer-based line segment detection method. Our approach leverages learnable geometric information to refine the ranking of predicted line segments by enhancing the confidence scores of high-quality predictions in a posterior verification step. We also propose a new line segment proposal method, wherein the feature point nearest to the centroid of the line segment directly predicts the location, significantly improving training efficiency and stability. Moreover, we introduce a line segment ranking loss to stabilize rankings during training, thereby enhancing the generalization capability of the model. Experimental results demonstrate that our method outperforms other Transformer-based and CNN-based approaches in prediction accuracy while requiring fewer training epochs than previous Transformer-based models.
Via

Mar 13, 2025
Abstract:Algorithmic detection of facial palsy offers the potential to improve current practices, which usually involve labor-intensive and subjective assessments by clinicians. In this paper, we present a multimodal fusion-based deep learning model that utilizes an MLP mixer-based model to process unstructured data (i.e. RGB images or images with facial line segments) and a feed-forward neural network to process structured data (i.e. facial landmark coordinates, features of facial expressions, or handcrafted features) for detecting facial palsy. We then contribute to a study to analyze the effect of different data modalities and the benefits of a multimodal fusion-based approach using videos of 20 facial palsy patients and 20 healthy subjects. Our multimodal fusion model achieved 96.00 F1, which is significantly higher than the feed-forward neural network trained on handcrafted features alone (82.80 F1) and an MLP mixer-based model trained on raw RGB images (89.00 F1).
* PAKDD 2025. arXiv admin note: text overlap with arXiv:2405.16496
Via

Mar 13, 2025
Abstract:The growing demand for detailed building roof data has driven the development of automated extraction methods to overcome the inefficiencies of traditional approaches, particularly in handling complex variations in building geometries. Re:PolyWorld, which integrates point detection with graph neural networks, presents a promising solution for reconstructing high-detail building roof vector data. This study enhances Re:PolyWorld's performance on complex urban residential structures by incorporating attention-based backbones and additional area segmentation loss. Despite dataset limitations, our experiments demonstrated improvements in point position accuracy (1.33 pixels) and line distance accuracy (14.39 pixels), along with a notable increase in the reconstruction score to 91.99%. These findings highlight the potential of advanced neural network architectures in addressing the challenges of complex urban residential geometries.
* Accepted to Joint Urban Remote Sensing Event (JURSE) 2025
Via

Mar 08, 2025
Abstract:Cervical spondylosis, a complex and prevalent condition, demands precise and efficient diagnostic techniques for accurate assessment. While MRI offers detailed visualization of cervical spine anatomy, manual interpretation remains labor-intensive and prone to error. To address this, we developed an innovative AI-assisted Expert-based Diagnosis System that automates both segmentation and diagnosis of cervical spondylosis using MRI. Leveraging a dataset of 960 cervical MRI images from patients with cervical disc herniation, our system features a pathology-guided segmentation model capable of accurately segmenting key cervical anatomical structures. The segmentation is followed by an expert-based diagnostic framework that automates the calculation of critical clinical indicators. Our segmentation model achieved an impressive average Dice coefficient exceeding 0.90 across four cervical spinal anatomies and demonstrated enhanced accuracy in herniation areas. Diagnostic evaluation further showcased the system precision, with a mean absolute error (MAE) of 2.44 degree for the C2-C7 Cobb angle and 3.60 precentage for the Maximum Spinal Cord Compression (MSCC) coefficient. In addition, our method delivered high accuracy, precision, recall, and F1 scores in herniation localization, K-line status assessment, and T2 hyperintensity detection. Comparative analysis demonstrates that our system outperforms existing methods, establishing a new benchmark for segmentation and diagnostic tasks for cervical spondylosis.
Via

Feb 28, 2025
Abstract:Badminton, known for having the fastest ball speeds among all sports, presents significant challenges to the field of computer vision, including player identification, court line detection, shuttlecock trajectory tracking, and player stroke-type classification. In this paper, we introduce a novel video segmentation strategy to extract frames of each player's racket swing in a badminton broadcast match. These segmented frames are then processed by two existing models: one for Human Pose Estimation to obtain player skeletal joints, and the other for shuttlecock trajectory detection to extract shuttlecock trajectories. Leveraging these joints, trajectories, and player positions as inputs, we propose Badminton Stroke-type Transformer (BST) to classify player stroke-types in singles. To the best of our knowledge, experimental results demonstrate that our method outperforms the previous state-of-the-art on the largest publicly available badminton video dataset, ShuttleSet, which shows that effectively leveraging ball trajectory is likely to be a trend for racket sports action recognition.
* 8 pages (excluding references). The code will be released in a few
months
Via

Feb 28, 2025
Abstract:The increasing adoption of large language models (LLMs) for code-related tasks has raised concerns about the security of their training datasets. One critical threat is dead code poisoning, where syntactically valid but functionally redundant code is injected into training data to manipulate model behavior. Such attacks can degrade the performance of neural code search systems, leading to biased or insecure code suggestions. Existing detection methods, such as token-level perplexity analysis, fail to effectively identify dead code due to the structural and contextual characteristics of programming languages. In this paper, we propose DePA (Dead Code Perplexity Analysis), a novel line-level detection and cleansing method tailored to the structural properties of code. DePA computes line-level perplexity by leveraging the contextual relationships between code lines and identifies anomalous lines by comparing their perplexity to the overall distribution within the file. Our experiments on benchmark datasets demonstrate that DePA significantly outperforms existing methods, achieving 0.14-0.19 improvement in detection F1-score and a 44-65% increase in poisoned segment localization precision. Furthermore, DePA enhances detection speed by 0.62-23x, making it practical for large-scale dataset cleansing. Overall, by addressing the unique challenges of dead code poisoning, DePA provides a robust and efficient solution for safeguarding the integrity of code generation model training datasets.
Via

Feb 18, 2025
Abstract:Ensuring the safety and reliability of power grids is critical as global energy demands continue to rise. Traditional inspection methods, such as manual observations or helicopter surveys, are resource-intensive and lack scalability. This paper explores the use of 3D computer vision to automate power grid inspections, utilizing the TS40K dataset -- a high-density, annotated collection of 3D LiDAR point clouds. By concentrating on 3D semantic segmentation, our approach addresses challenges like class imbalance and noisy data to enhance the detection of critical grid components such as power lines and towers. The benchmark results indicate significant performance improvements, with IoU scores reaching 95.53% for the detection of power lines using transformer-based models. Our findings illustrate the potential for integrating ML into grid maintenance workflows, increasing efficiency and enabling proactive risk management strategies.
Via
