What is LLaVA? LLaVA (Low Light Video Analysis) is a dataset and benchmark for low light video analysis tasks.
Papers and Code
Aug 07, 2025
Abstract:Multimodal generative AI usually involves generating image or text responses given inputs in another modality. The evaluation of image-text relevancy is essential for measuring response quality or ranking candidate responses. In particular, binary relevancy evaluation, i.e., ``Relevant'' vs. ``Not Relevant'', is a fundamental problem. However, this is a challenging task considering that texts have diverse formats and the definition of relevancy varies in different scenarios. We find that Multimodal Large Language Models (MLLMs) are an ideal choice to build such evaluators, as they can flexibly handle complex text formats and take in additional task information. In this paper, we present LLaVA-RE, a first attempt for binary image-text relevancy evaluation with MLLM. It follows the LLaVA architecture and adopts detailed task instructions and multimodal in-context samples. In addition, we propose a novel binary relevancy data set that covers various tasks. Experimental results validate the effectiveness of our framework.
* Published in the First Workshop of Evaluation of Multi-Modal
Generation 2025
Via

Jul 29, 2025
Abstract:Multimodal Large Language Models (MLLMs) hold huge potential for usage in the medical domain, but their computational costs necessitate efficient compression techniques. This paper evaluates the impact of structural pruning and activation-aware quantization on a fine-tuned LLAVA model for medical applications. We propose a novel layer selection method for pruning, analyze different quantization techniques, and assess the performance trade-offs in a prune-SFT-quantize pipeline. Our proposed method enables MLLMs with 7B parameters to run within 4 GB of VRAM, reducing memory usage by 70% while achieving 4% higher model performance compared to traditional pruning and quantization techniques in the same compression ratio.
* 12 pages, 5 figures. tcolorbox dependencies were removed for arXiv
compatibility. All references are included via a precompiled .bbl file
Via

Jul 28, 2025
Abstract:Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
Via

Jul 28, 2025
Abstract:While Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities, their substantial computational and memory requirements pose significant barriers to practical deployment. Current parameter reduction techniques primarily involve training MLLMs from Small Language Models (SLMs), but these methods offer limited flexibility and remain computationally intensive. To address this gap, we propose to directly compress existing MLLMs through structural pruning combined with efficient recovery training. Specifically, we investigate two structural pruning paradigms--layerwise and widthwise pruning--applied to the language model backbone of MLLMs, alongside supervised finetuning and knowledge distillation. Additionally, we assess the feasibility of conducting recovery training with only a small fraction of the available data. Our results show that widthwise pruning generally maintains better performance in low-resource scenarios with limited computational resources or insufficient finetuning data. As for the recovery training, finetuning only the multimodal projector is sufficient at small compression levels (< 20%). Furthermore, a combination of supervised finetuning and hidden-state distillation yields optimal recovery across various pruning levels. Notably, effective recovery can be achieved with as little as 5% of the original training data, while retaining over 95% of the original performance. Through empirical study on two representative MLLMs, i.e., LLaVA-v1.5-7B and Bunny-v1.0-3B, this study offers actionable insights for practitioners aiming to compress MLLMs effectively without extensive computation resources or sufficient data.
* Accepted at GCPR 2025
Via

Jul 28, 2025
Abstract:Large multimodal models (LMMs) have advanced significantly by integrating visual encoders with extensive language models, enabling robust reasoning capabilities. However, compressing LMMs for deployment on edge devices remains a critical challenge. In this work, we propose an adaptive search algorithm that optimizes sparsity and KV cache compression to enhance LMM efficiency. Utilizing the Tree-structured Parzen Estimator, our method dynamically adjusts pruning ratios and KV cache quantization bandwidth across different LMM layers, using model performance as the optimization objective. This approach uniquely combines pruning with key-value cache quantization and incorporates a fast pruning technique that eliminates the need for additional fine-tuning or weight adjustments, achieving efficient compression without compromising accuracy. Comprehensive evaluations on benchmark datasets, including LLaVA-1.5 7B and 13B, demonstrate our method superiority over state-of-the-art techniques such as SparseGPT and Wanda across various compression levels. Notably, our framework automatic allocation of KV cache compression resources sets a new standard in LMM optimization, delivering memory efficiency without sacrificing much performance.
* 6 pages
Via

Jul 24, 2025
Abstract:Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.
Via

Jul 22, 2025
Abstract:Video data, especially long-form video, is extremely dense and high-dimensional. Text-based summaries of video content offer a way to represent query-relevant content in a much more compact manner than raw video. In addition, textual representations are easily ingested by state-of-the-art large language models (LLMs), which enable reasoning over video content to answer complex natural language queries. To solve this issue, we rely on the progressive construction of a text-based memory by a video captioner operating on shorter chunks of the video, where spatio-temporal modeling is computationally feasible. We explore ways to improve the quality of the activity log comprised solely of short video captions. Because the video captions tend to be focused on human actions, and questions may pertain to other information in the scene, we seek to enrich the memory with static scene descriptions using Vision Language Models (VLMs). Our video understanding system relies on the LaViLa video captioner in combination with a LLM to answer questions about videos. We first explored different ways of partitioning the video into meaningful segments such that the textual descriptions more accurately reflect the structure of the video content. Furthermore, we incorporated static scene descriptions into the captioning pipeline using LLaVA VLM, resulting in a more detailed and complete caption log and expanding the space of questions that are answerable from the textual memory. Finally, we have successfully fine-tuned the LaViLa video captioner to produce both action and scene captions, significantly improving the efficiency of the captioning pipeline compared to using separate captioning models for the two tasks. Our model, controllable hybrid captioner, can alternate between different types of captions according to special input tokens that signals scene changes detected in the video.
Via

Jul 22, 2025
Abstract:Reliable end-to-end clinical report generation has been a longstanding goal of medical ML research. The end goal for this process is to alleviate radiologists' workloads and provide second opinions to clinicians or patients. Thus, a necessary prerequisite for report generation models is a strong general performance and some type of innate grounding capability, to convince clinicians or patients of the veracity of the generated reports. In this paper, we present ASaRG (\textbf{A}utomatic \textbf{S}egmentation-\textbf{a}ssisted \textbf{R}eport \textbf{G}eneration), an extension of the popular LLaVA architecture that aims to tackle both of these problems. ASaRG proposes to fuse intermediate features and fine-grained segmentation maps created by specialist radiological models into LLaVA's multi-modal projection layer via simple concatenation. With a small number of added parameters, our approach achieves a +0.89\% performance gain ($p=0.012$) in CE F1 score compared to the LLaVA baseline when using only intermediate features, and +2.77\% performance gain ($p<0.001$) when adding a combination of intermediate features and fine-grained segmentation maps. Compared with COMG and ORID, two other report generation methods that utilize segmentations, the performance gain amounts to 6.98\% and 6.28\% in F1 score, respectively. ASaRG is not mutually exclusive with other changes made to the LLaVA architecture, potentially allowing our method to be combined with other advances in the field. Finally, the use of an arbitrary number of segmentations as part of the input demonstrably allows tracing elements of the report to the corresponding segmentation maps and verifying the groundedness of assessments. Our code will be made publicly available at a later date.
Via

Jul 22, 2025
Abstract:This paper presents a systematic evaluation of state-of-the-art multimodal large language models (MLLMs) on intuitive physics tasks using the GRASP and IntPhys 2 datasets. We assess the open-source models InternVL 2.5, Qwen 2.5 VL, LLaVA-OneVision, and the proprietary Gemini 2.0 Flash Thinking, finding that even the latest models struggle to reliably distinguish physically plausible from implausible scenarios. To go beyond performance metrics, we conduct a probing analysis of model embeddings, extracting intermediate representations at key processing stages to examine how well task-relevant information is preserved. Our results show that, depending on task difficulty, a critical vision-language misalignment can emerge: vision encoders successfully capture physical plausibility cues, but this information is not effectively utilized by the language model, leading to failures in reasoning. This misalignment suggests that the primary limitation of MLLMs in intuitive physics tasks is not the vision component but the ineffective integration of visual and linguistic information. Our findings highlight vision-language alignment as a key area for improvement, offering insights for future MLLMs development.
Via

Jul 17, 2025
Abstract:Recent progress in Multimodal Large Language Models (MLLMs) has unlocked powerful cross-modal reasoning abilities, but also raised new safety concerns, particularly when faced with adversarial multimodal inputs. To improve the safety of MLLMs during inference, we introduce a modular and adaptive inference-time intervention technology, AutoSteer, without requiring any fine-tuning of the underlying model. AutoSteer incorporates three core components: (1) a novel Safety Awareness Score (SAS) that automatically identifies the most safety-relevant distinctions among the model's internal layers; (2) an adaptive safety prober trained to estimate the likelihood of toxic outputs from intermediate representations; and (3) a lightweight Refusal Head that selectively intervenes to modulate generation when safety risks are detected. Experiments on LLaVA-OV and Chameleon across diverse safety-critical benchmarks demonstrate that AutoSteer significantly reduces the Attack Success Rate (ASR) for textual, visual, and cross-modal threats, while maintaining general abilities. These findings position AutoSteer as a practical, interpretable, and effective framework for safer deployment of multimodal AI systems.
* Working in progress. 22 pages (8+ for main); 25 figures; 1 table
Via
