Abstract:Sentiment analysis, an emerging research area within natural language processing (NLP), has primarily been explored in contexts like elections and social media trends, but there remains a significant gap in understanding emotional dynamics during civil unrest, particularly in the Bangla language. Our study pioneers sentiment analysis in Bangla during a national crisis by examining public emotions amid Bangladesh's 2024 mass uprising. We curated a unique dataset of 2,028 annotated news headlines from major Facebook news portals, classifying them into Outrage, Hope, and Despair. Through Latent Dirichlet Allocation (LDA), we identified prevalent themes like political corruption and public protests, and analyzed how events such as internet blackouts shaped sentiment patterns. It outperformed multilingual transformers (mBERT: 67%, XLM-RoBERTa: 71%) and traditional machine learning methods (SVM and Logistic Regression: both 70%). These results highlight the effectiveness of language-specific models and offer valuable insights into public sentiment during political turmoil.
Abstract:Multimodal Large Language Models (MLLMs) hold huge potential for usage in the medical domain, but their computational costs necessitate efficient compression techniques. This paper evaluates the impact of structural pruning and activation-aware quantization on a fine-tuned LLAVA model for medical applications. We propose a novel layer selection method for pruning, analyze different quantization techniques, and assess the performance trade-offs in a prune-SFT-quantize pipeline. Our proposed method enables MLLMs with 7B parameters to run within 4 GB of VRAM, reducing memory usage by 70% while achieving 4% higher model performance compared to traditional pruning and quantization techniques in the same compression ratio.