Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
Retrieval-augmented generation (RAG) promises grounded question answering, yet domain settings with multiple heterogeneous knowledge bases (KBs) remain challenging. In Chinese Tibetan medicine, encyclopedia entries are often dense and easy to match, which can dominate retrieval even when classics or clinical papers provide more authoritative evidence. We study a practical setting with three KBs (encyclopedia, classics, and clinical papers) and a 500-query benchmark (cutoff $K{=}5$) covering both single-KB and cross-KB questions. We propose two complementary methods to improve traceability, reduce hallucinations, and enable cross-KB verification. First, DAKS performs KB routing and budgeted retrieval to mitigate density-driven bias and to prioritize authoritative sources when appropriate. Second, we use an alignment graph to guide evidence fusion and coverage-aware packing, improving cross-KB evidence coverage without relying on naive concatenation. All answers are generated by a lightweight generator, \textsc{openPangu-Embedded-7B}. Experiments show consistent gains in routing quality and cross-KB evidence coverage, with the full system achieving the best CrossEv@5 while maintaining strong faithfulness and citation correctness.
Temporal knowledge graph question answering (TKGQA) aims to answer time-sensitive questions by leveraging temporal knowledge bases. While Large Language Models (LLMs) demonstrate significant potential in TKGQA, current prompting strategies constrain their efficacy in two primary ways. First, they are prone to reasoning hallucinations under complex temporal constraints. Second, static prompting limits model autonomy and generalization, as it lack optimization through dynamic interaction with temporal knowledge graphs (TKGs) environments. To address these limitations, we propose \textbf{TKG-Thinker}, a novel agent equipped with autonomous planning and adaptive retrieval capabilities for reasoning over TKGs. Specifically, TKG-Thinker performs in-depth temporal reasoning through dynamic multi-turn interactions with TKGs via a dual-training strategy. We first apply Supervised Fine-Tuning (SFT) with chain-of thought data to instill core planning capabilities, followed by a Reinforcement Learning (RL) stage that leverages multi-dimensional rewards to refine reasoning policies under intricate temporal constraints. Experimental results on benchmark datasets with three open-source LLMs show that TKG-Thinker achieves state-of-the-art performance and exhibits strong generalization across complex TKGQA settings.
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
When applying LLMs to real-world enterprise operations, LLMs need to handle proprietary knowledge in small domains of specific operations ($\textbf{micro domains}$). A previous study shows micro domain-adaptive pre-training ($\textbf{mDAPT}$) with fewer documents is effective, similarly to DAPT in larger domains. However, it evaluates mDAPT only on multiple-choice questions; thus, its effectiveness for generative tasks in real-world operations remains unknown. We aim to reveal the potential and bottlenecks of mDAPT for generative tasks. To this end, we disentangle the answering process into three subtasks and evaluate the performance of each subtask: (1) $\textbf{eliciting}$ facts relevant to questions from an LLM's own knowledge, (2) $\textbf{reasoning}$ over the facts to obtain conclusions, and (3) $\textbf{composing}$ long-form answers based on the conclusions. We verified mDAPT on proprietary IT product knowledge for real-world questions in IT technical support operations. As a result, mDAPT resolved the elicitation task that the base model struggled with but did not resolve other subtasks. This clarifies mDAPT's effectiveness in the knowledge aspect and its bottlenecks in other aspects. Further analysis empirically shows that resolving the elicitation and reasoning tasks ensures sufficient performance (over 90%), emphasizing the need to enhance reasoning capability.
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLM's output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
This paper describes VILLAIN, a multimodal fact-checking system that verifies image-text claims through prompt-based multi-agent collaboration. For the AVerImaTeC shared task, VILLAIN employs vision-language model agents across multiple stages of fact-checking. Textual and visual evidence is retrieved from the knowledge store enriched through additional web collection. To identify key information and address inconsistencies among evidence items, modality-specific and cross-modal agents generate analysis reports. In the subsequent stage, question-answer pairs are produced based on these reports. Finally, the Verdict Prediction agent produces the verification outcome based on the image-text claim and the generated question-answer pairs. Our system ranked first on the leaderboard across all evaluation metrics. The source code is publicly available at https://github.com/ssu-humane/VILLAIN.
Large language models often struggle to recognize their knowledge limits in closed-book question answering, leading to confident hallucinations. While decomposed prompting is typically used to improve accuracy, we investigate its impact on reliability. We evaluate three task-equivalent prompting regimes: Direct, Assistive, and Incremental, across different model scales and multi-hop QA benchmarks. We find that although accuracy gains from decomposition diminish in frontier models, disagreements between prompting regimes remain highly indicative of potential errors. Because factual knowledge is stable while hallucinations are stochastic, cross-regime agreement provides a precise signal of internal uncertainty. We leverage this signal to implement a training-free abstention policy that requires no retrieval or fine-tuning. Our results show that disagreement-based abstention outperforms standard uncertainty baselines as an error detector, improving both F1 and AUROC across settings. This demonstrates that decomposition-based prompting can serve as a practical diagnostic probe for model reliability in closed-book QA.
Large Language Model (LLM)-based agents that plan, use tools and act has begun to shape healthcare and medicine. Reported studies demonstrate competence on various tasks ranging from EHR analysis and differential diagnosis to treatment planning and research workflows. Yet the literature largely consists of overviews which are either broad surveys or narrow dives into a single capability (e.g., memory, planning, reasoning), leaving healthcare work without a common frame. We address this by reviewing 49 studies using a seven-dimensional taxonomy: Cognitive Capabilities, Knowledge Management, Interaction Patterns, Adaptation & Learning, Safety & Ethics, Framework Typology and Core Tasks & Subtasks with 29 operational sub-dimensions. Using explicit inclusion and exclusion criteria and a labeling rubric (Fully Implemented, Partially Implemented, Not Implemented), we map each study to the taxonomy and report quantitative summaries of capability prevalence and co-occurrence patterns. Our empirical analysis surfaces clear asymmetries. For instance, the External Knowledge Integration sub-dimension under Knowledge Management is commonly realized (~76% Fully Implemented) whereas Event-Triggered Activation sub-dimenison under Interaction Patterns is largely absent (~92% Not Implemented) and Drift Detection & Mitigation sub-dimension under Adaptation & Learning is rare (~98% Not Implemented). Architecturally, Multi-Agent Design sub-dimension under Framework Typology is the dominant pattern (~82% Fully Implemented) while orchestration layers remain mostly partial. Across Core Tasks & Subtasks, information centric capabilities lead e.g., Medical Question Answering & Decision Support and Benchmarking & Simulation, while action and discovery oriented areas such as Treatment Planning & Prescription still show substantial gaps (~59% Not Implemented).
While LLMs exhibit remarkable fluency, their utility is often compromised by factual hallucinations and a lack of traceable provenance. Existing resources for grounding mitigate this but typically enforce a dichotomy: they offer either structured knowledge without textual context (e.g., knowledge bases) or grounded text with limited scale and linguistic coverage. To bridge this gap, we introduce FactNet, a massive, open-source resource designed to unify 1.7 billion atomic assertions with 3.01 billion auditable evidence pointers derived exclusively from 316 Wikipedia editions. Unlike recent synthetic approaches, FactNet employs a strictly deterministic construction pipeline, ensuring that every evidence unit is recoverable with byte-level precision. Extensive auditing confirms a high grounding precision of 92.1%, even in long-tail languages. Furthermore, we establish FactNet-Bench, a comprehensive evaluation suite for Knowledge Graph Completion, Question Answering, and Fact Checking. FactNet provides the community with a foundational, reproducible resource for training and evaluating trustworthy, verifiable multilingual systems.