Advanced Persistent Threats (APTs) are sophisticated, long-term cyberattacks that are difficult to detect because they operate stealthily and often blend into normal system behavior. This paper presents a neuro-symbolic anomaly detection framework that combines a Graph Autoencoder (GAE) with rare pattern mining to identify APT-like activities in system-level provenance data. Our approach first constructs a process behavioral graph using k-Nearest Neighbors based on feature similarity, then learns normal relational structure using a Graph Autoencoder. Anomaly candidates are identified through deviations between observed and reconstructed graph structure. To further improve detection, we integrate an rare pattern mining module that discovers infrequent behavioral co-occurrences and uses them to boost anomaly scores for processes exhibiting rare signatures. We evaluate the proposed method on the DARPA Transparent Computing datasets and show that rare-pattern boosting yields substantial gains in anomaly ranking quality over the baseline GAE. Compared with existing unsupervised approaches on the same benchmark, our single unified model consistently outperforms individual context-based detectors and achieves performance competitive with ensemble aggregation methods that require multiple separate detectors. These results highlight the value of coupling graph-based representation learning with classical pattern mining to improve both effectiveness and interpretability in provenance-based security anomaly detection.
This paper proposes a novel Variational Graph-to-Scheduler (VG2S) framework for solving the Job Shop Scheduling Problem (JSSP), a critical task in manufacturing that directly impacts operational efficiency and resource utilization. Conventional Deep Reinforcement Learning (DRL) approaches often face challenges such as non-stationarity during training and limited generalization to unseen problem instances because they optimize representation learning and policy execution simultaneously. To address these issues, we introduce variational inference to the JSSP domain for the first time and derive a probabilistic objective based on the Evidence of Lower Bound (ELBO) with maximum entropy reinforcement learning. By mathematically decoupling representation learning from policy optimization, the VG2S framework enables the agent to learn robust structural representations of scheduling instances through a variational graph encoder. This approach significantly enhances training stability and robustness against hyperparameter variations. Extensive experiments demonstrate that the proposed method exhibits superior zero-shot generalization compared with state-of-the-art DRL baselines and traditional dispatching rules, particularly on large-scale and challenging benchmark instances such as DMU and SWV.
Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations from structured data. Despite their growing popularity and success across various applications, GNNs encounter several challenges that limit their performance. in their generalization, robustness to adversarial perturbations, and the effectiveness of their representation learning capabilities. In this dissertation, I investigate these core aspects through three main contributions: (1) developing new representation learning techniques based on Graph Shift Operators (GSOs, aiming for enhanced performance across various contexts and applications, (2) introducing generalization-enhancing methods through graph data augmentation, and (3) developing more robust GNNs by leveraging orthonormalization techniques and noise-based defenses against adversarial attacks. By addressing these challenges, my work provides a more principled understanding of the limitations and potential of GNNs.
Many complex networks exhibit hyperbolic structural properties, making hyperbolic space a natural candidate for representing hierarchical and tree-like graphs with low distortion. Based on this observation, Hyperbolic Graph Neural Networks (HGNNs) have been widely adopted as a principled choice for representation learning on tree-like graphs. In this work, we question this paradigm by proposing an additional condition of geometry-task alignment, i.e., whether the metric structure of the target follows that of the input graph. We theoretically and empirically demonstrate the capability of HGNNs to recover low-distortion representations on two synthetic regression problems, and show that their geometric inductive bias becomes helpful when the problem requires preserving metric structure. Additionally, we evaluate HGNNs on the tasks of link prediction and node classification by jointly analyzing predictive performance and embedding distortion, revealing that only link prediction is geometry-aligned. Overall, our findings shift the focus from only asking "Is the graph hyperbolic?" to also questioning "Is the task aligned with hyperbolic geometry?", showing that HGNNs consistently outperform Euclidean models under such alignment, while their advantage vanishes otherwise.
This paper proposes a graph-augmented reasoning framework for tobacco pest and disease management that integrates structured domain knowledge into large language models. Building on GraphRAG, we construct a domain-specific knowledge graph and retrieve query-relevant subgraphs to provide relational evidence during answer generation. The framework adopts ChatGLM as the Transformer backbone with LoRA-based parameter-efficient fine-tuning, and employs a graph neural network to learn node representations that capture symptom-disease-treatment dependencies. By explicitly modeling diseases, symptoms, pesticides, and control measures as linked entities, the system supports evidence-aware retrieval beyond surface-level text similarity. Retrieved graph evidence is incorporated into the LLM input to guide generation toward domain-consistent recommendations and to mitigate hallucinated or inappropriate treatments. Experimental results show consistent improvements over text-only baselines, with the largest gains observed on multi-hop and comparative reasoning questions that require chaining multiple relations.
Drug discovery motivates efficient molecular property prediction under limited labeled data. Chemical space is vast, often estimated at approximately 10^60 drug-like molecules, while only thousands of drugs have been approved. As a result, self-supervised pretraining on large unlabeled molecular corpora has become essential for data-efficient molecular representation learning. We introduce **CardinalGraphFormer**, a graph transformer that incorporates Graphormer-inspired structural biases, including shortest-path distance and centrality, as well as direct-bond edge bias, within a structured sparse attention regime limited to shortest-path distance <= 3. The model further augments this design with a cardinality-preserving unnormalized aggregation channel over the same support set. Pretraining combines contrastive graph-level alignment with masked attribute reconstruction. Under a fully matched evaluation protocol, CardinalGraphFormer improves mean performance across all 11 evaluated tasks and achieves statistically significant gains on 10 of 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET tasks when compared to strong reproduced baselines.
Over the past years, embedding learning on networks has shown tremendous results in link prediction tasks for complex systems, with a wide range of real-life applications. Learning a representation for each node in a knowledge graph allows us to capture topological and semantic information, which can be processed in downstream analyses later. In the link prediction task, high-dimensional network information is encoded into low-dimensional vectors, which are then fed to a predictor to infer new connections between nodes in the network. As the network complexity (that is, the numbers of connections and types of interactions) grows, embedding learning turns out increasingly challenging. This review covers published models on embedding learning on multiplex networks for link prediction. First, we propose refined taxonomies to classify and compare models, depending on the type of embeddings and embedding techniques. Second, we review and address the problem of reproducible and fair evaluation of embedding learning on multiplex networks for the link prediction task. Finally, we tackle evaluation on directed multiplex networks by proposing a novel and fair testing procedure. This review constitutes a crucial step towards the development of more performant and tractable embedding learning approaches for multiplex networks and their fair evaluation for the link prediction task. We also suggest guidelines on the evaluation of models, and provide an informed perspective on the challenges and tools currently available to address downstream analyses applied to multiplex networks.
The rapid evolution of Large Language Models (LLMs) towards long-context reasoning and sparse architectures has pushed memory requirements far beyond the capacity of individual device HBM. While emerging supernode architectures offer terabyte-scale shared memory pools via high-bandwidth interconnects, existing software stacks fail to exploit this hardware effectively. Current runtime-based offloading and swapping techniques operate with a local view, leading to reactive scheduling and exposed communication latency that stall the computation pipeline. In this paper, we propose the SuperNode Memory Management Framework (\textbf{HyperOffload}). It employs a compiler-assisted approach that leverages graph-driven memory management to treat remote memory access as explicit operations in the computation graph, specifically designed for hierarchical SuperNode architectures. Unlike reactive runtime systems, SuperNode represents data movement using cache operators within the compiler's Intermediate Representation (IR). This design enables a global, compile-time analysis of tensor lifetimes and execution dependencies. Leveraging this visibility, we develop a global execution-order refinement algorithm that statically schedules data transfers to hide remote memory latency behind compute-intensive regions. We implement SuperNode within the production deep learning framework MindSpore, adding a remote memory backend and specialized compiler passes. Evaluation on representative LLM workloads shows that SuperNode reduces peak device memory usage by up to 26\% for inference while maintaining end-to-end performance. Our work demonstrates that integrating memory-augmented hardware into the compiler's optimization framework is essential for scaling next-generation AI workloads.
Dynamic graph representation learning requires capturing both structural relationships and temporal evolution, yet existing approaches face a fundamental trade-off: attention-based methods achieve expressiveness at $O(T^2)$ complexity, while recurrent architectures suffer from gradient pathologies and dense state storage. Spiking neural networks offer event-driven efficiency but remain limited by sequential propagation, binary information loss, and local aggregation that misses global context. We propose ChronoSpike, an adaptive spiking graph neural network that integrates learnable LIF neurons with per-channel membrane dynamics, multi-head attentive spatial aggregation on continuous features, and a lightweight Transformer temporal encoder, enabling both fine-grained local modeling and long-range dependency capture with linear memory complexity $O(T \cdot d)$. On three large-scale benchmarks, ChronoSpike outperforms twelve state-of-the-art baselines by $2.0\%$ Macro-F1 and $2.4\%$ Micro-F1 while achieving $3-10\times$ faster training than recurrent methods with a constant 105K-parameter budget independent of graph size. We provide theoretical guarantees for membrane potential boundedness, gradient flow stability under contraction factor $ρ< 1$, and BIBO stability; interpretability analyses reveal heterogeneous temporal receptive fields and a learned primacy effect with $83-88\%$ sparsity.
Cortical folding exhibits substantial inter-individual variability while preserving stable anatomical landmarks that enable fine-scale characterization of cortical organization. Among these, the three-hinge gyrus (3HG) serves as a key folding primitive, showing consistent topology yet meaningful variations in morphology, connectivity, and function. Existing landmark-based methods typically model each 3HG independently, ignoring that 3HGs form higher-order folding communities that capture mesoscale structure. This simplification weakens anatomical representation and makes one-to-one matching sensitive to positional variability and noise. We propose a spectral graph representation learning framework that models community-level folding units rather than isolated landmarks. Each 3HG is encoded using a dual-profile representation combining surface topology and structural connectivity. Subject-specific spectral clustering identifies coherent folding communities, followed by topological refinement to preserve anatomical continuity. For cross-subject correspondence, we introduce Joint Morphological-Geometric Matching, jointly optimizing geometric and morphometric similarity. Across over 1000 Human Connectome Project subjects, the resulting communities show reduced morphometric variance, stronger modular organization, improved hemispheric consistency, and superior alignment compared with atlas-based and landmark-based or embedding-based baselines. These findings demonstrate that community-level modeling provides a robust and anatomically grounded framework for individualized cortical characterization and reliable cross-subject correspondence.