We present UniTrack, a plug-and-play graph-theoretic loss function designed to significantly enhance multi-object tracking (MOT) performance by directly optimizing tracking-specific objectives through unified differentiable learning. Unlike prior graph-based MOT methods that redesign tracking architectures, UniTrack provides a universal training objective that integrates detection accuracy, identity preservation, and spatiotemporal consistency into a single end-to-end trainable loss function, enabling seamless integration with existing MOT systems without architectural modifications. Through differentiable graph representation learning, UniTrack enables networks to learn holistic representations of motion continuity and identity relationships across frames. We validate UniTrack across diverse tracking models and multiple challenging benchmarks, demonstrating consistent improvements across all tested architectures and datasets including Trackformer, MOTR, FairMOT, ByteTrack, GTR, and MOTE. Extensive evaluations show up to 53\% reduction in identity switches and 12\% IDF1 improvements across challenging benchmarks, with GTR achieving peak performance gains of 9.7\% MOTA on SportsMOT.
The rapid expansion of Internet of Things (IoT) ecosystems has led to increasingly complex and heterogeneous network topologies. Traditional network monitoring and visualization tools rely on aggregated metrics or static representations, which fail to capture the evolving relationships and structural dependencies between devices. Although Graph Neural Networks (GNNs) offer a powerful way to learn from relational data, their internal representations often remain opaque and difficult to interpret for security-critical operations. Consequently, this work introduces an interpretable pipeline that generates directly visualizable low-dimensional representations by mapping high-dimensional embeddings onto a latent manifold. This projection enables the interpretable monitoring and interoperability of evolving network states, while integrated feature attribution techniques decode the specific characteristics shaping the manifold structure. The framework achieves a classification F1-score of 0.830 for intrusion detection while also highlighting phenomena such as concept drift. Ultimately, the presented approach bridges the gap between high-dimensional GNN embeddings and human-understandable network behavior, offering new insights for network administrators and security analysts.
Accurate cell instance segmentation is foundational for digital pathology analysis. Existing methods based on contour detection and distance mapping still face significant challenges in processing complex and dense cellular regions. Graph coloring-based methods provide a new paradigm for this task, yet the effectiveness of this paradigm in real-world scenarios with dense overlaps and complex topologies has not been verified. Addressing this issue, we release a large-scale dataset GBC-FS 2025, which contains highly complex and dense sub-cellular nuclear arrangements. We conduct the first systematic analysis of the chromatic properties of cell adjacency graphs across four diverse datasets and reveal an important discovery: most real-world cell graphs are non-bipartite, with a high prevalence of odd-length cycles (predominantly triangles). This makes simple 2-coloring theory insufficient for handling complex tissues, while higher-chromaticity models would cause representational redundancy and optimization difficulties. Building on this observation of complex real-world contexts, we propose Disco (Densely-overlapping Cell Instance Segmentation via Adjacency-aware COllaborative Coloring), an adjacency-aware framework based on the "divide and conquer" principle. It uniquely combines a data-driven topological labeling strategy with a constrained deep learning system to resolve complex adjacency conflicts. First, "Explicit Marking" strategy transforms the topological challenge into a learnable classification task by recursively decomposing the cell graph and isolating a "conflict set." Second, "Implicit Disambiguation" mechanism resolves ambiguities in conflict regions by enforcing feature dissimilarity between different instances, enabling the model to learn separable feature representations.
Robust generalization under distribution shift remains difficult to monitor and optimize in the absence of target-domain labels, as models with similar in-distribution accuracy can exhibit markedly different out-of-distribution (OOD) performance. While prior work has focused on training-time regularization and low-order representation statistics, little is known about whether the geometric structure of learned embeddings provides reliable post-hoc signals of robustness. We propose a geometry-based diagnostic framework that constructs class-conditional mutual k-nearest-neighbor graphs from in-distribution embeddings and extracts two complementary invariants: a global spectral complexity proxy based on the reduced log-determinant of the normalized Laplacian, and a local smoothness measure based on Ollivier--Ricci curvature. Across multiple architectures, training regimes, and corruption benchmarks, we find that lower spectral complexity and higher mean curvature consistently predict stronger OOD accuracy across checkpoints. Controlled perturbations and topological analyses further show that these signals reflect meaningful representation structure rather than superficial embedding statistics. Our results demonstrate that representation geometry enables interpretable, label-free robustness diagnosis and supports reliable unsupervised checkpoint selection under distribution shift.
Graph neural networks (GNNs) are widely used for learning on structured data, yet their ability to distinguish non-isomorphic graphs is fundamentally limited. These limitations are usually attributed to message passing; in this work we show that an independent bottleneck arises at the readout stage. Using finite-dimensional representation theory, we prove that all linear permutation-invariant readouts, including sum and mean pooling, factor through the Reynolds (group-averaging) operator and therefore project node embeddings onto the fixed subspace of the permutation action, erasing all non-trivial symmetry-aware components regardless of encoder expressivity. This yields both a new expressivity barrier and an interpretable characterization of what global pooling preserves or destroys. To overcome this collapse, we introduce projector-based invariant readouts that decompose node representations into symmetry-aware channels and summarize them with nonlinear invariant statistics, preserving permutation invariance while retaining information provably invisible to averaging. Empirically, swapping only the readout enables fixed encoders to separate WL-hard graph pairs and improves performance across multiple benchmarks, demonstrating that readout design is a decisive and under-appreciated factor in GNN expressivity.
Text retrieval using learned sparse representations of queries and documents has, over the years, evolved into a highly effective approach to search. It is thanks to recent advances in approximate nearest neighbor search-with the emergence of highly efficient algorithms such as the inverted index-based Seismic and the graph-based Hnsw-that retrieval with sparse representations became viable in practice. In this work, we scrutinize the efficiency of sparse retrieval algorithms and focus particularly on the size of a data structure that is common to all algorithmic flavors and that constitutes a substantial fraction of the overall index size: the forward index. In particular, we seek compression techniques to reduce the storage footprint of the forward index without compromising search quality or inner product computation latency. In our examination with various integer compression techniques, we report that StreamVByte achieves the best trade-off between memory footprint, retrieval accuracy, and latency. We then improve StreamVByte by introducing DotVByte, a new algorithm tailored to inner product computation. Experiments on MsMarco show that our improvements lead to significant space savings while maintaining retrieval efficiency.
This paper aims to train a graph foundation model that is able to represent any graph as a vector preserving structural and semantic information useful for downstream graph-level tasks such as graph classification and graph clustering. To learn the features of graphs from diverse domains while maintaining strong generalization ability to new domains, we propose a multi-graph-based feature alignment method, which constructs weighted graphs using the attributes of all nodes in each dataset and then generates consistent node embeddings. To enhance the consistency of the features from different datasets, we propose a density maximization mean alignment algorithm with guaranteed convergence. The original graphs and generated node embeddings are fed into a graph neural network to achieve discriminative graph representations in contrastive learning. More importantly, to enhance the information preservation from node-level representations to the graph-level representation, we construct a multi-layer reference distribution module without using any pooling operation. We also provide a theoretical generalization bound to support the effectiveness of the proposed model. The experimental results of few-shot graph classification and graph clustering show that our model outperforms strong baselines.
Knowledge graphs (KGs) have become a key ingredient supporting a variety of applications. Beyond the traditional triplet representation of facts where a relation connects two entities, modern KGs observe an increasing number of hyper-relational facts, where an arbitrary number of qualifiers associated with a triplet provide auxiliary information to further describe the rich semantics of the triplet, which can effectively boost the reasoning performance in link prediction tasks. However, existing link prediction techniques over such hyper-relational KGs (HKGs) mostly focus on a transductive setting, where KG embedding models are learned from the specific vocabulary of a given KG and subsequently can only make predictions within the same vocabulary, limiting their generalizability to previously unseen vocabularies. Against this background, we propose THOR, an inducTive link prediction technique for Hyper-relational knOwledge gRaphs. Specifically, we first introduce both relation and entity foundation graphs, modeling their fundamental inter- and intra-fact interactions in HKGs, which are agnostic to any specific relations and entities. Afterward, THOR is designed to learn from the two foundation graphs with two parallel graph encoders followed by a transformer decoder, which supports efficient masked training and fully-inductive inference. We conduct a thorough evaluation of THOR in hyper-relational link prediction tasks on 12 datasets with different settings. Results show that THOR outperforms a sizable collection of baselines, yielding 66.1%, 55.9%, and 20.4% improvement over the best-performing rule-based, semi-inductive, and fully-inductive techniques, respectively. A series of ablation studies also reveals our key design factors capturing the structural invariance transferable across HKGs for inductive tasks.
MOOC recommendation systems have received increasing attention to help learners navigate and select preferred learning content. Traditional methods such as collaborative filtering and content-based filtering suffer from data sparsity and over-specialization. To alleviate these limitations, graph-based approaches have been proposed; however, they still rely heavily on manually predefined metapaths, which often capture only superficial structural relationships and impose substantial burdens on domain experts as well as significant engineering costs. To overcome these limitations, we propose AMR (Aspect-aware MOOC Recommendation), a novel framework that models path-specific multiple aspects by embedding the semantic content of nodes within each metapath. AMR automatically discovers metapaths through bi-directional walks, derives aspect-aware path representations using a bi-LSTM-based encoder, and incorporates these representations as edge features in the learner-learner and KC-KC subgraphs to achieve fine-grained semantically informed KC recommendations. Extensive experiments on the large-scale MOOCCube and PEEK datasets show that AMR consistently outperforms state-of-the-art graph neural network baselines across key metrics such as HR@K and nDCG@K. Further analysis confirms that AMR effectively captures rich path-specific aspect information, allowing more accurate recommendations than those methods that rely solely on predefined metapaths. The code will be available upon accepted.
Systematic literature reviews (SLRs) are fundamental to evidence-based research, but manual screening is an increasing bottleneck as scientific output grows. Screening features low prevalence of relevant studies and scarce, costly expert decisions. Traditional active learning (AL) systems help, yet typically rely on fixed query strategies for selecting the next unlabeled documents. These static strategies do not adapt over time and ignore the relational structure of scientific literature networks. This thesis introduces AutoDiscover, a framework that reframes AL as an online decision-making problem driven by an adaptive agent. Literature is modeled as a heterogeneous graph capturing relationships among documents, authors, and metadata. A Heterogeneous Graph Attention Network (HAN) learns node representations, which a Discounted Thompson Sampling (DTS) agent uses to dynamically manage a portfolio of query strategies. With real-time human-in-the-loop labels, the agent balances exploration and exploitation under non-stationary review dynamics, where strategy utility changes over time. On the 26-dataset SYNERGY benchmark, AutoDiscover achieves higher screening efficiency than static AL baselines. Crucially, the agent mitigates cold start by bootstrapping discovery from minimal initial labels where static approaches fail. We also introduce TS-Insight, an open-source visual analytics dashboard to interpret, verify, and diagnose the agent's decisions. Together, these contributions accelerate SLR screening under scarce expert labels and low prevalence of relevant studies.