Abstract:Vision-language models (VLMs) demonstrate impressive performance on standard video understanding benchmarks yet fail systematically on simple reasoning tasks that preschool children can solve, including counting, spatial reasoning, and compositional understanding. We hypothesize that the pedagogically-structured content of educational videos provides an ideal training signal for improving these capabilities. We introduce DoraVQA, a dataset of 5,344 question-answer pairs automatically extracted from 8 seasons of Dora the Explorer with precise timestamp alignment. Each episode follows a consistent \textit{context-question-pause-answer} structure that creates a self-contained learning environment analogous to interactive tutoring. We fine-tune both Qwen2 and Qwen3 using Group Relative Policy Optimization (GRPO), leveraging the clear correctness signals and structured reasoning traces inherent in educational content. Despite training exclusively on 38 hours of children's educational videos, our approach achieves improvements of 8-14 points on DoraVQA and state-of-the-art 86.16\% on CVBench, with strong transfer to Video-MME and NExT-QA, demonstrating effective generalization from narrow pedagogical content to broad multimodal understanding. Through cross-domain benchmarks, we show that VLMs can perform tasks that require robust reasoning learned from structured educational content, suggesting that content structure matters as much as content scale.
Abstract:In dynamic Neural Radiance Fields (NeRF) systems, state-of-the-art novel view synthesis methods often fail under significant viewpoint deviations, producing unstable and unrealistic renderings. To address this, we introduce Expanded Dynamic NeRF (ExpanDyNeRF), a monocular NeRF framework that leverages Gaussian splatting priors and a pseudo-ground-truth generation strategy to enable realistic synthesis under large-angle rotations. ExpanDyNeRF optimizes density and color features to improve scene reconstruction from challenging perspectives. We also present the Synthetic Dynamic Multiview (SynDM) dataset, the first synthetic multiview dataset for dynamic scenes with explicit side-view supervision-created using a custom GTA V-based rendering pipeline. Quantitative and qualitative results on SynDM and real-world datasets demonstrate that ExpanDyNeRF significantly outperforms existing dynamic NeRF methods in rendering fidelity under extreme viewpoint shifts. Further details are provided in the supplementary materials.
Abstract:We present Lang2Motion, a framework for language-guided point trajectory generation by aligning motion manifolds with joint embedding spaces. Unlike prior work focusing on human motion or video synthesis, we generate explicit trajectories for arbitrary objects using motion extracted from real-world videos via point tracking. Our transformer-based auto-encoder learns trajectory representations through dual supervision: textual motion descriptions and rendered trajectory visualizations, both mapped through CLIP's frozen encoders. Lang2Motion achieves 34.2% Recall@1 on text-to-trajectory retrieval, outperforming video-based methods by 12.5 points, and improves motion accuracy by 33-52% (12.4 ADE vs 18.3-25.3) compared to video generation baselines. We demonstrate 88.3% Top-1 accuracy on human action recognition despite training only on diverse object motions, showing effective transfer across motion domains. Lang2Motion supports style transfer, semantic interpolation, and latent-space editing through CLIP-aligned trajectory representations.
Abstract:Point tracking in video sequences is a foundational capability for real-world computer vision applications, including robotics, autonomous systems, augmented reality, and video analysis. While recent deep learning-based trackers achieve state-of-the-art accuracy on challenging benchmarks, their reliance on per-frame GPU inference poses a major barrier to deployment on resource-constrained edge devices, where compute, power, and connectivity are limited. We introduce K-Track (Kalman-enhanced Tracking), a general-purpose, tracker-agnostic acceleration framework designed to bridge this deployment gap. K-Track reduces inference cost by combining sparse deep learning keyframe updates with lightweight Kalman filtering for intermediate frame prediction, using principled Bayesian uncertainty propagation to maintain temporal coherence. This hybrid strategy enables 5-10X speedup while retaining over 85% of the original trackers' accuracy. We evaluate K-Track across multiple state-of-the-art point trackers and demonstrate real-time performance on edge platforms such as the NVIDIA Jetson Nano and RTX Titan. By preserving accuracy while dramatically lowering computational requirements, K-Track provides a practical path toward deploying high-quality point tracking in real-world, resource-limited settings, closing the gap between modern tracking algorithms and deployable vision systems.




Abstract:We propose Track and Caption Any Motion (TCAM), a motion-centric framework for automatic video understanding that discovers and describes motion patterns without user queries. Understanding videos in challenging conditions like occlusion, camouflage, or rapid movement often depends more on motion dynamics than static appearance. TCAM autonomously observes a video, identifies multiple motion activities, and spatially grounds each natural language description to its corresponding trajectory through a motion-field attention mechanism. Our key insight is that motion patterns, when aligned with contrastive vision-language representations, provide powerful semantic signals for recognizing and describing actions. Through unified training that combines global video-text alignment with fine-grained spatial correspondence, TCAM enables query-free discovery of multiple motion expressions via multi-head cross-attention. On the MeViS benchmark, TCAM achieves 58.4% video-to-text retrieval, 64.9 JF for spatial grounding, and discovers 4.8 relevant expressions per video with 84.7% precision, demonstrating strong cross-task generalization.
Abstract:Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall.
Abstract:Current invasive assistive technologies are designed to infer high-dimensional motor control signals from severely paralyzed patients. However, they face significant challenges, including public acceptance, limited longevity, and barriers to commercialization. Meanwhile, noninvasive alternatives often rely on artifact-prone signals, require lengthy user training, and struggle to deliver robust high-dimensional control for dexterous tasks. To address these issues, this study introduces a novel human-centered multimodal AI approach as intelligent compensatory mechanisms for lost motor functions that could potentially enable patients with severe paralysis to control high-dimensional assistive devices, such as dexterous robotic arms, using limited and noninvasive inputs. In contrast to the current state-of-the-art (SoTA) noninvasive approaches, our context-aware, multimodal shared-autonomy framework integrates deep reinforcement learning algorithms to blend limited low-dimensional user input with real-time environmental perception, enabling adaptive, dynamic, and intelligent interpretation of human intent for complex dexterous manipulation tasks, such as pick-and-place. The results from our ARAS (Adaptive Reinforcement learning for Amplification of limited inputs in Shared autonomy) trained with synthetic users over 50,000 computer simulation episodes demonstrated the first successful implementation of the proposed closed-loop human-in-the-loop paradigm, outperforming the SoTA shared autonomy algorithms. Following a zero-shot sim-to-real transfer, ARAS was evaluated on 23 human subjects, demonstrating high accuracy in dynamic intent detection and smooth, stable 3D trajectory control for dexterous pick-and-place tasks. ARAS user study achieved a high task success rate of 92.88%, with short completion times comparable to those of SoTA invasive assistive technologies.




Abstract:End-effector based assistive robots face persistent challenges in generating smooth and robust trajectories when controlled by human's noisy and unreliable biosignals such as muscle activities and brainwaves. The produced endpoint trajectories are often jerky and imprecise to perform complex tasks such as stable robotic grasping. We propose STREAMS (Self-Training Robotic End-to-end Adaptive Multimodal Shared autonomy) as a novel framework leveraged deep reinforcement learning to tackle this challenge in biosignal based robotic control systems. STREAMS blends environmental information and synthetic user input into a Deep Q Learning Network (DQN) pipeline for an interactive end-to-end and self-training mechanism to produce smooth trajectories for the control of end-effector based robots. The proposed framework achieved a high-performance record of 98% in simulation with dynamic target estimation and acquisition without any pre-existing datasets. As a zero-shot sim-to-real user study with five participants controlling a physical robotic arm with noisy head movements, STREAMS (as an assistive mode) demonstrated significant improvements in trajectory stabilization, user satisfaction, and task performance reported as a success rate of 83% compared to manual mode which was 44% without any task support. STREAMS seeks to improve biosignal based assistive robotic controls by offering an interactive, end-to-end solution that stabilizes end-effector trajectories, enhancing task performance and accuracy.




Abstract:Multiple toddler tracking (MTT) involves identifying and differentiating toddlers in video footage. While conventional multi-object tracking (MOT) algorithms are adept at tracking diverse objects, toddlers pose unique challenges due to their unpredictable movements, various poses, and similar appearance. Tracking toddlers in indoor environments introduces additional complexities such as occlusions and limited fields of view. In this paper, we address the challenges of MTT and propose MTTSort, a customized method built upon the DeepSort algorithm. MTTSort is designed to track multiple toddlers in indoor videos accurately. Our contributions include discussing the primary challenges in MTT, introducing a genetic algorithm to optimize hyperparameters, proposing an accurate tracking algorithm, and curating the MTTrack dataset using unbiased AI co-labeling techniques. We quantitatively compare MTTSort to state-of-the-art MOT methods on MTTrack, DanceTrack, and MOT15 datasets. In our evaluation, the proposed method outperformed other MOT methods, achieving 0.98, 0.68, and 0.98 in multiple object tracking accuracy (MOTA), higher order tracking accuracy (HOTA), and iterative and discriminative framework 1 (IDF1) metrics, respectively.




Abstract:Automated human action recognition, a burgeoning field within computer vision, boasts diverse applications spanning surveillance, security, human-computer interaction, tele-health, and sports analysis. Precise action recognition in infants serves a multitude of pivotal purposes, encompassing safety monitoring, developmental milestone tracking, early intervention for developmental delays, fostering parent-infant bonds, advancing computer-aided diagnostics, and contributing to the scientific comprehension of child development. This paper delves into the intricacies of infant action recognition, a domain that has remained relatively uncharted despite the accomplishments in adult action recognition. In this study, we introduce a groundbreaking dataset called ``InfActPrimitive'', encompassing five significant infant milestone action categories, and we incorporate specialized preprocessing for infant data. We conducted an extensive comparative analysis employing cutting-edge skeleton-based action recognition models using this dataset. Our findings reveal that, although the PoseC3D model achieves the highest accuracy at approximately 71%, the remaining models struggle to accurately capture the dynamics of infant actions. This highlights a substantial knowledge gap between infant and adult action recognition domains and the urgent need for data-efficient pipeline models.