Robust 3D point cloud classification is often pursued by scaling up backbones or relying on specialized data augmentation. We instead ask whether structural abstraction alone can improve robustness, and study a simple topology-inspired decomposition based on the Mapper algorithm. We propose Mapper-GIN, a lightweight pipeline that partitions a point cloud into overlapping regions using Mapper (PCA lens, cubical cover, and followed by density-based clustering), constructs a region graph from their overlaps, and performs graph classification with a Graph Isomorphism Network. On the corruption benchmark ModelNet40-C, Mapper-GIN achieves competitive and stable accuracy under Noise and Transformation corruptions with only 0.5M parameters. In contrast to prior approaches that require heavier architectures or additional mechanisms to gain robustness, Mapper-GIN attains strong corruption robustness through simple region-level graph abstraction and GIN message passing. Overall, our results suggest that region-graph structure offers an efficient and interpretable source of robustness for 3D visual recognition.
Accurate cell instance segmentation is foundational for digital pathology analysis. Existing methods based on contour detection and distance mapping still face significant challenges in processing complex and dense cellular regions. Graph coloring-based methods provide a new paradigm for this task, yet the effectiveness of this paradigm in real-world scenarios with dense overlaps and complex topologies has not been verified. Addressing this issue, we release a large-scale dataset GBC-FS 2025, which contains highly complex and dense sub-cellular nuclear arrangements. We conduct the first systematic analysis of the chromatic properties of cell adjacency graphs across four diverse datasets and reveal an important discovery: most real-world cell graphs are non-bipartite, with a high prevalence of odd-length cycles (predominantly triangles). This makes simple 2-coloring theory insufficient for handling complex tissues, while higher-chromaticity models would cause representational redundancy and optimization difficulties. Building on this observation of complex real-world contexts, we propose Disco (Densely-overlapping Cell Instance Segmentation via Adjacency-aware COllaborative Coloring), an adjacency-aware framework based on the "divide and conquer" principle. It uniquely combines a data-driven topological labeling strategy with a constrained deep learning system to resolve complex adjacency conflicts. First, "Explicit Marking" strategy transforms the topological challenge into a learnable classification task by recursively decomposing the cell graph and isolating a "conflict set." Second, "Implicit Disambiguation" mechanism resolves ambiguities in conflict regions by enforcing feature dissimilarity between different instances, enabling the model to learn separable feature representations.
This paper aims to train a graph foundation model that is able to represent any graph as a vector preserving structural and semantic information useful for downstream graph-level tasks such as graph classification and graph clustering. To learn the features of graphs from diverse domains while maintaining strong generalization ability to new domains, we propose a multi-graph-based feature alignment method, which constructs weighted graphs using the attributes of all nodes in each dataset and then generates consistent node embeddings. To enhance the consistency of the features from different datasets, we propose a density maximization mean alignment algorithm with guaranteed convergence. The original graphs and generated node embeddings are fed into a graph neural network to achieve discriminative graph representations in contrastive learning. More importantly, to enhance the information preservation from node-level representations to the graph-level representation, we construct a multi-layer reference distribution module without using any pooling operation. We also provide a theoretical generalization bound to support the effectiveness of the proposed model. The experimental results of few-shot graph classification and graph clustering show that our model outperforms strong baselines.
The neighborhood scope (i.e., number of hops) where graph neural networks (GNNs) aggregate information to characterize a node's statistical property is critical to GNNs' performance. Two-stage approaches, training and validating GNNs for every pre-specified neighborhood scope to search for the best setting, is a time-consuming task and tends to be biased due to the search space design. How to adaptively determine proper neighborhood scopes for the aggregation process for both homophilic and heterophilic graphs remains largely unexplored. We thus propose to model the GNNs' message-passing behavior on a graph as a stochastic process by treating the number of hops as a beta process. This Bayesian framework allows us to infer the most plausible neighborhood scope for message aggregation simultaneously with the optimization of GNN parameters. Our theoretical analysis shows that the scope inference improves the expressivity of a GNN. Experiments on benchmark homophilic and heterophilic datasets show that the proposed method is compatible with state-of-the-art GNN variants, achieving competitive or superior performance on the node classification task, and providing well-calibrated predictions.
The rapid expansion of Internet of Things (IoT) ecosystems has led to increasingly complex and heterogeneous network topologies. Traditional network monitoring and visualization tools rely on aggregated metrics or static representations, which fail to capture the evolving relationships and structural dependencies between devices. Although Graph Neural Networks (GNNs) offer a powerful way to learn from relational data, their internal representations often remain opaque and difficult to interpret for security-critical operations. Consequently, this work introduces an interpretable pipeline that generates directly visualizable low-dimensional representations by mapping high-dimensional embeddings onto a latent manifold. This projection enables the interpretable monitoring and interoperability of evolving network states, while integrated feature attribution techniques decode the specific characteristics shaping the manifold structure. The framework achieves a classification F1-score of 0.830 for intrusion detection while also highlighting phenomena such as concept drift. Ultimately, the presented approach bridges the gap between high-dimensional GNN embeddings and human-understandable network behavior, offering new insights for network administrators and security analysts.
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
Large text data sets, such as publications, websites, and other text-based media, inherit two distinct types of features: (1) the text itself, its information conveyed through semantics, and (2) its relationship to other texts through links, references, or shared attributes. While the latter can be described as a graph structure and can be handled by a range of established algorithms for classification and prediction, the former has recently gained new potential through the use of LLM embedding models. Demonstrating these possibilities and their practicability, we investigate the Web of Science dataset, containing ~56 million scientific publications through the lens of our proposed embedding method, revealing a self-structured landscape of texts.
Graph-structured data underpins many critical applications. While foundation models have transformed language and vision via large-scale pretraining and lightweight adaptation, extending this paradigm to general, real-world graphs is challenging. In this work, we present Graph Billion- Foundation-Fusion (GraphBFF): the first end-to-end recipe for building billion-parameter Graph Foundation Models (GFMs) for arbitrary heterogeneous, billion-scale graphs. Central to the recipe is the GraphBFF Transformer, a flexible and scalable architecture designed for practical billion-scale GFMs. Using the GraphBFF, we present the first neural scaling laws for general graphs and show that loss decreases predictably as either model capacity or training data scales, depending on which factor is the bottleneck. The GraphBFF framework provides concrete methodologies for data batching, pretraining, and fine-tuning for building GFMs at scale. We demonstrate the effectiveness of the framework with an evaluation of a 1.4 billion-parameter GraphBFF Transformer pretrained on one billion samples. Across ten diverse, real-world downstream tasks on graphs unseen during training, spanning node- and link-level classification and regression, GraphBFF achieves remarkable zero-shot and probing performance, including in few-shot settings, with large margins of up to 31 PRAUC points. Finally, we discuss key challenges and open opportunities for making GFMs a practical and principled foundation for graph learning at industrial scale.
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
Safe artificial intelligence for perception tasks remains a major challenge, partly due to the lack of data with high-quality labels. Annotations themselves are subject to aleatoric and epistemic uncertainty, which is typically ignored during annotation and evaluation. While crowdsourcing enables collecting multiple annotations per image to estimate these uncertainties, this approach is impractical at scale due to the required annotation effort. We introduce a probabilistic label spreading method that provides reliable estimates of aleatoric and epistemic uncertainty of labels. Assuming label smoothness over the feature space, we propagate single annotations using a graph-based diffusion method. We prove that label spreading yields consistent probability estimators even when the number of annotations per data point converges to zero. We present and analyze a scalable implementation of our method. Experimental results indicate that, compared to baselines, our approach substantially reduces the annotation budget required to achieve a desired label quality on common image datasets and achieves a new state of the art on the Data-Centric Image Classification benchmark.