Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
Graph neural networks (GNNs) often struggle in class-imbalanced settings, where minority classes are under-represented and predictions are biased toward majorities. We propose \textbf{PIMPC-GNN}, a physics-informed multi-phase consensus framework for imbalanced node classification. Our method integrates three complementary dynamics: (i) thermodynamic diffusion, which spreads minority labels to capture long-range dependencies, (ii) Kuramoto synchronisation, which aligns minority nodes through oscillatory consensus, and (iii) spectral embedding, which separates classes via structural regularisation. These perspectives are combined through class-adaptive ensemble weighting and trained with an imbalance-aware loss that couples balanced cross-entropy with physics-based constraints. Across five benchmark datasets and imbalance ratios from 5-100, PIMPC-GNN outperforms 16 state-of-the-art baselines, achieving notable gains in minority-class recall (up to +12.7\%) and balanced accuracy (up to +8.3\%). Beyond empirical improvements, the framework also provides interpretable insights into consensus dynamics in graph learning. The code is available at \texttt{https://github.com/afofanah/PIMPC-GNN}.
Deploying Large Language Models (LLMs) for discriminative workloads is often limited by inference latency, compute, and API costs at scale. Active distillation reduces these costs by querying an LLM oracle to train compact discriminative students, but most pipelines distill only final labels, discarding intermediate reasoning signals and offering limited diagnostics of what reasoning is missing and where errors arise. We propose Graph of Concept Predictors (GCP), a reasoning-aware active distillation framework that externalizes the teacher's decision process as a directed acyclic graph and mirrors it with modular concept predictors in the student. GCP enhances sample efficiency through a graph-aware acquisition strategy that targets uncertainty and disagreement at critical reasoning nodes. Additionally, it improves training stability and efficiency by performing targeted sub-module retraining, which attributes downstream loss to specific concept predictors and updates only the most influential modules. Experiments on eight NLP classification benchmarks demonstrate that GCP enhances performance under limited annotation budgets while yielding more interpretable and controllable training dynamics. Code is available at: https://github.com/Ziyang-Yu/GCP.
Graph Neural Networks (GNNs) have become a standard approach for learning from graph-structured data. However, their reliance on parametric classifiers (most often linear softmax layers) limits interpretability and sometimes hinders generalization. Recent work on interpolation-based methods, particularly Non-Negative Kernel regression (NNK), has demonstrated that predictions can be expressed as convex combinations of similar training examples in the embedding space, yielding both theoretical results and interpretable explanations.
Many complex networks exhibit hyperbolic structural properties, making hyperbolic space a natural candidate for representing hierarchical and tree-like graphs with low distortion. Based on this observation, Hyperbolic Graph Neural Networks (HGNNs) have been widely adopted as a principled choice for representation learning on tree-like graphs. In this work, we question this paradigm by proposing an additional condition of geometry-task alignment, i.e., whether the metric structure of the target follows that of the input graph. We theoretically and empirically demonstrate the capability of HGNNs to recover low-distortion representations on two synthetic regression problems, and show that their geometric inductive bias becomes helpful when the problem requires preserving metric structure. Additionally, we evaluate HGNNs on the tasks of link prediction and node classification by jointly analyzing predictive performance and embedding distortion, revealing that only link prediction is geometry-aligned. Overall, our findings shift the focus from only asking "Is the graph hyperbolic?" to also questioning "Is the task aligned with hyperbolic geometry?", showing that HGNNs consistently outperform Euclidean models under such alignment, while their advantage vanishes otherwise.
Graph neural networks (GNNs) are increasingly adopted in industrial graph-based monitoring systems (e.g., Industrial internet of things (IIoT) device graphs, power-grid topology models, and manufacturing communication networks) to support anomaly detection, state estimation, and asset classification. In such settings, an adversary that compromises a small number of edge devices may inject counterfeit nodes (e.g., rogue sensors, virtualized endpoints, or spoofed substations) to bias downstream decisions while evading topology- and homophily-based sanitization. This paper formulates deployment-oriented node-injection attacks under constrained resources and proposes the \emph{Single-Edge Graph Injection Attack} (SEGIA), in which each injected node attaches to the operational graph through a single edge. SEGIA integrates a pruned SGC surrogate, multi-hop neighborhood sampling, and reverse graph convolution-based feature synthesis with a similarity-regularized objective to preserve local homophily and survive edge pruning. Theoretical analysis and extensive evaluations across datasets and defenses show at least $25\%$ higher attack success than representative baselines under substantially smaller edge budgets. These results indicate a system-level risk in industrial GNN deployments and motivate lightweight admission validation and neighborhood-consistency monitoring.
Decentralized Federated Learning (DFL) enables clients with local data to collaborate in a peer-to-peer manner to train a generalized model. In this paper, we unify two branches of work that have separately solved important challenges in DFL: (i) gradient tracking techniques for mitigating data heterogeneity and (ii) accounting for diverse availability of resources across clients. We propose $\textit{Sporadic Gradient Tracking}$ ($\texttt{Spod-GT}$), the first DFL algorithm that incorporates these factors over general directed graphs by allowing (i) client-specific gradient computation frequencies and (ii) heterogeneous and asymmetric communication frequencies. We conduct a rigorous convergence analysis of our methodology with relaxed assumptions on gradient estimation variance and gradient diversity of clients, providing consensus and optimality guarantees for GT over directed graphs despite intermittent client participation. Through numerical experiments on image classification datasets, we demonstrate the efficacy of $\texttt{Spod-GT}$ compared to well-known GT baselines.
Graph Neural Networks frequently exhibit significant performance degradation in the out-of-distribution test scenario. While test-time training (TTT) offers a promising solution, existing Parameter Finetuning (PaFT) paradigm suffer from catastrophic forgetting, hindering their real-world applicability. We propose TTReFT, a novel Test-Time Representation FineTuning framework that transitions the adaptation target from model parameters to latent representations. Specifically, TTReFT achieves this through three key innovations: (1) uncertainty-guided node selection for specific interventions, (2) low-rank representation interventions that preserve pre-trained knowledge, and (3) an intervention-aware masked autoencoder that dynamically adjust masking strategy to accommodate the node selection scheme. Theoretically, we establish guarantees for TTReFT in OOD settings. Empirically, extensive experiments across five benchmark datasets demonstrate that TTReFT achieves consistent and superior performance. Our work establishes representation finetuning as a new paradigm for graph TTT, offering both theoretical grounding and immediate practical utility for real-world deployment.
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
Multimodal Attributed Graphs (MAGs) have been widely adopted for modeling complex systems by integrating multi-modal information, such as text and images, on nodes. However, we identify a discrepancy between the implicit semantic structure induced by different modality embeddings and the explicit graph structure. For instance, neighbors in the explicit graph structure may be close in one modality but distant in another. Since existing methods typically perform message passing over the fixed explicit graph structure, they inadvertently aggregate dissimilar features, introducing modality-specific noise and impeding effective node representation learning. To address this, we propose OptiMAG, an Unbalanced Optimal Transport-based regularization framework. OptiMAG employs the Fused Gromov-Wasserstein distance to explicitly guide cross-modal structural consistency within local neighborhoods, effectively mitigating structural-semantic conflicts. Moreover, a KL divergence penalty enables adaptive handling of cross-modal inconsistencies. This framework can be seamlessly integrated into existing multimodal graph models, acting as an effective drop-in regularizer. Experiments demonstrate that OptiMAG consistently outperforms baselines across multiple tasks, ranging from graph-centric tasks (e.g., node classification, link prediction) to multimodal-centric generation tasks (e.g., graph2text, graph2image). The source code will be available upon acceptance.