Document layout analysis (DLA) is the process of analyzing a document's spatial arrangement of content to understand its structure and layout. This includes identifying the location of text, tables, images, and other elements as well as the overall structure, such as headings and subheadings. DLA helps in extracting and categorizing information and automating document processing workflows.
We introduce MinerU2.5, a 1.2B-parameter document parsing vision-language model that achieves state-of-the-art recognition accuracy while maintaining exceptional computational efficiency. Our approach employs a coarse-to-fine, two-stage parsing strategy that decouples global layout analysis from local content recognition. In the first stage, the model performs efficient layout analysis on downsampled images to identify structural elements, circumventing the computational overhead of processing high-resolution inputs. In the second stage, guided by the global layout, it performs targeted content recognition on native-resolution crops extracted from the original image, preserving fine-grained details in dense text, complex formulas, and tables. To support this strategy, we developed a comprehensive data engine that generates diverse, large-scale training corpora for both pretraining and fine-tuning. Ultimately, MinerU2.5 demonstrates strong document parsing ability, achieving state-of-the-art performance on multiple benchmarks, surpassing both general-purpose and domain-specific models across various recognition tasks, while maintaining significantly lower computational overhead.
Text line segmentation is a critical step in handwritten document image analysis. Segmenting text lines in historical handwritten documents, however, presents unique challenges due to irregular handwriting, faded ink, and complex layouts with overlapping lines and non-linear text flow. Furthermore, the scarcity of large annotated datasets renders fully supervised learning approaches impractical for such materials. To address these challenges, we introduce the Few-Shot Text Line Segmentation of Ancient Handwritten Documents (FEST) Competition. Participants are tasked with developing systems capable of segmenting text lines in U-DIADS-TL dataset, using only three annotated images per manuscript for training. The competition dataset features a diverse collection of ancient manuscripts exhibiting a wide range of layouts, degradation levels, and non-standard formatting, closely reflecting real-world conditions. By emphasizing few-shot learning, FEST competition aims to promote the development of robust and adaptable methods that can be employed by humanities scholars with minimal manual annotation effort, thus fostering broader adoption of automated document analysis tools in historical research.
InfluenceMap's LobbyMap Platform monitors the climate policy engagement of over 500 companies and 250 industry associations, assessing each entity's support or opposition to science-based policy pathways for achieving the Paris Agreement's goal of limiting global warming to 1.5{\deg}C. Although InfluenceMap has made progress with automating key elements of the analytical workflow, a significant portion of the assessment remains manual, making it time- and labor-intensive and susceptible to human error. We propose an AI-assisted framework to accelerate the monitoring of corporate climate policy engagement by leveraging Retrieval-Augmented Generation to automate the most time-intensive extraction of relevant evidence from large-scale textual data. Our evaluation shows that a combination of layout-aware parsing, the Nomic embedding model, and few-shot prompting strategies yields the best performance in extracting and classifying evidence from multilingual corporate documents. We conclude that while the automated RAG system effectively accelerates evidence extraction, the nuanced nature of the analysis necessitates a human-in-the-loop approach where the technology augments, rather than replaces, expert judgment to ensure accuracy.
First responders widely adopt body-worn cameras to document incident scenes and support post-event analysis. However, reviewing lengthy video footage is impractical in time-critical situations. Effective situational awareness demands a concise visual summary that can be quickly interpreted. This work presents a computer vision pipeline that transforms body-camera footage into informative panoramic images summarizing the incident scene. Our method leverages monocular Simultaneous Localization and Mapping (SLAM) to estimate camera trajectories and reconstruct the spatial layout of the environment. Key viewpoints are identified by clustering camera poses along the trajectory, and representative frames from each cluster are selected. These frames are fused into spatially coherent panoramic images using multi-frame stitching techniques. The resulting summaries enable rapid understanding of complex environments and facilitate efficient decision-making and incident review.
This paper presents our methodology and findings from three tasks across Optical Character Recognition (OCR) and Document Layout Analysis using advanced deep learning techniques. First, for the historical Hebrew fragments of the Dead Sea Scrolls, we enhanced our dataset through extensive data augmentation and employed the Kraken and TrOCR models to improve character recognition. In our analysis of 16th to 18th-century meeting resolutions task, we utilized a Convolutional Recurrent Neural Network (CRNN) that integrated DeepLabV3+ for semantic segmentation with a Bidirectional LSTM, incorporating confidence-based pseudolabeling to refine our model. Finally, for modern English handwriting recognition task, we applied a CRNN with a ResNet34 encoder, trained using the Connectionist Temporal Classification (CTC) loss function to effectively capture sequential dependencies. This report offers valuable insights and suggests potential directions for future research.
Documents are core carriers of information and knowl-edge, with broad applications in finance, healthcare, and scientific research. Tables, as the main medium for structured data, encapsulate key information and are among the most critical document components. Existing studies largely focus on surface-level tasks such as layout analysis, table detection, and data extraction, lacking deep semantic parsing of tables and their contextual associations. This limits advanced tasks like cross-paragraph data interpretation and context-consistent analysis. To address this, we propose DOTABLER, a table-centric semantic document parsing framework designed to uncover deep semantic links between tables and their context. DOTABLER leverages a custom dataset and domain-specific fine-tuning of pre-trained models, integrating a complete parsing pipeline to identify context segments semantically tied to tables. Built on this semantic understanding, DOTABLER implements two core functionalities: table-centric document structure parsing and domain-specific table retrieval, delivering comprehensive table-anchored semantic analysis and precise extraction of semantically relevant tables. Evaluated on nearly 4,000 pages with over 1,000 tables from real-world PDFs, DOTABLER achieves over 90% Precision and F1 scores, demonstrating superior performance in table-context semantic analysis and deep document parsing compared to advanced models such as GPT-4o.
The exponential growth of scientific literature in PDF format necessitates advanced tools for efficient and accurate document understanding, summarization, and content optimization. Traditional methods fall short in handling complex layouts and multimodal content, while direct application of Large Language Models (LLMs) and Vision-Language Large Models (LVLMs) lacks precision and control for intricate editing tasks. This paper introduces DocRefine, an innovative framework designed for intelligent understanding, content refinement, and automated summarization of scientific PDF documents, driven by natural language instructions. DocRefine leverages the power of advanced LVLMs (e.g., GPT-4o) by orchestrating a sophisticated multi-agent system comprising six specialized and collaborative agents: Layout & Structure Analysis, Multimodal Content Understanding, Instruction Decomposition, Content Refinement, Summarization & Generation, and Fidelity & Consistency Verification. This closed-loop feedback architecture ensures high semantic accuracy and visual fidelity. Evaluated on the comprehensive DocEditBench dataset, DocRefine consistently outperforms state-of-the-art baselines across various tasks, achieving overall scores of 86.7% for Semantic Consistency Score (SCS), 93.9% for Layout Fidelity Index (LFI), and 85.0% for Instruction Adherence Rate (IAR). These results demonstrate DocRefine's superior capability in handling complex multimodal document editing, preserving semantic integrity, and maintaining visual consistency, marking a significant advancement in automated scientific document processing.
Optical Character Recognition (OCR) for mathematical formula is essential for the intelligent analysis of scientific literature. However, both task-specific and general vision-language models often struggle to handle the structural diversity, complexity, and real-world variability inherent in mathematical content. In this work, we present DocTron-Formula, a unified framework built upon general vision-language models, thereby eliminating the need for specialized architectures. Furthermore, we introduce CSFormula, a large-scale and challenging dataset that encompasses multidisciplinary and structurally complex formulas at the line, paragraph, and page levels. Through straightforward supervised fine-tuning, our approach achieves state-of-the-art performance across a variety of styles, scientific domains, and complex layouts. Experimental results demonstrate that our method not only surpasses specialized models in terms of accuracy and robustness, but also establishes a new paradigm for the automated understanding of complex scientific documents.
This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input to traditional clustering algorithms such as $k$-Means and DBSCAN. Our method aims to achieve a finer-grained document understanding by not only grouping documents at the type level (e.g., invoices, purchase orders), but also distinguishing between different templates within the same document category. This is achieved by using embeddings that capture textual content, layout information, and visual features of documents. We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pretrained multimodal models, including SBERT, LayoutLMv1, LayoutLMv3, DiT, Donut, and ColPali. Our findings demonstrate the potential of multimodal embeddings to significantly enhance document clustering, offering benefits for various applications in intelligent document processing, document layout analysis, and unsupervised document classification. This work provides valuable insight into the advantages and limitations of different multimodal models for this task and opens new avenues for future research to understand and organize document collections.
With the increasing adoption of Large Language Models (LLMs) and Vision-Language Models (VLMs), rich document analysis technologies for applications like Retrieval-Augmented Generation (RAG) and visual RAG are gaining significant attention. Recent research indicates that using VLMs can achieve better RAG performance, but processing rich documents still remains a challenge since a single page contains large amounts of information. In this paper, we present SCAN (\textbf{S}emanti\textbf{C} Document Layout \textbf{AN}alysis), a novel approach enhancing both textual and visual Retrieval-Augmented Generation (RAG) systems working with visually rich documents. It is a VLM-friendly approach that identifies document components with appropriate semantic granularity, balancing context preservation with processing efficiency. SCAN uses a coarse-grained semantic approach that divides documents into coherent regions covering continuous components. We trained the SCAN model by fine-tuning object detection models with sophisticated annotation datasets. Our experimental results across English and Japanese datasets demonstrate that applying SCAN improves end-to-end textual RAG performance by up to 9.0\% and visual RAG performance by up to 6.4\%, outperforming conventional approaches and even commercial document processing solutions.