Topic:Document Layout Analysis
What is Document Layout Analysis? Document layout analysis (DLA) is the process of analyzing a document's spatial arrangement of content to understand its structure and layout. This includes identifying the location of text, tables, images, and other elements as well as the overall structure, such as headings and subheadings. DLA helps in extracting and categorizing information and automating document processing workflows.
Papers and Code
Aug 14, 2025
Abstract:This paper presents our methodology and findings from three tasks across Optical Character Recognition (OCR) and Document Layout Analysis using advanced deep learning techniques. First, for the historical Hebrew fragments of the Dead Sea Scrolls, we enhanced our dataset through extensive data augmentation and employed the Kraken and TrOCR models to improve character recognition. In our analysis of 16th to 18th-century meeting resolutions task, we utilized a Convolutional Recurrent Neural Network (CRNN) that integrated DeepLabV3+ for semantic segmentation with a Bidirectional LSTM, incorporating confidence-based pseudolabeling to refine our model. Finally, for modern English handwriting recognition task, we applied a CRNN with a ResNet34 encoder, trained using the Connectionist Temporal Classification (CTC) loss function to effectively capture sequential dependencies. This report offers valuable insights and suggests potential directions for future research.
Via

Aug 14, 2025
Abstract:Documents are core carriers of information and knowl-edge, with broad applications in finance, healthcare, and scientific research. Tables, as the main medium for structured data, encapsulate key information and are among the most critical document components. Existing studies largely focus on surface-level tasks such as layout analysis, table detection, and data extraction, lacking deep semantic parsing of tables and their contextual associations. This limits advanced tasks like cross-paragraph data interpretation and context-consistent analysis. To address this, we propose DOTABLER, a table-centric semantic document parsing framework designed to uncover deep semantic links between tables and their context. DOTABLER leverages a custom dataset and domain-specific fine-tuning of pre-trained models, integrating a complete parsing pipeline to identify context segments semantically tied to tables. Built on this semantic understanding, DOTABLER implements two core functionalities: table-centric document structure parsing and domain-specific table retrieval, delivering comprehensive table-anchored semantic analysis and precise extraction of semantically relevant tables. Evaluated on nearly 4,000 pages with over 1,000 tables from real-world PDFs, DOTABLER achieves over 90% Precision and F1 scores, demonstrating superior performance in table-context semantic analysis and deep document parsing compared to advanced models such as GPT-4o.
* 8 pages, 5 figures, 28th European Conference on Artificial
Intelligence (ECAI-2025)
Via

Aug 09, 2025
Abstract:The exponential growth of scientific literature in PDF format necessitates advanced tools for efficient and accurate document understanding, summarization, and content optimization. Traditional methods fall short in handling complex layouts and multimodal content, while direct application of Large Language Models (LLMs) and Vision-Language Large Models (LVLMs) lacks precision and control for intricate editing tasks. This paper introduces DocRefine, an innovative framework designed for intelligent understanding, content refinement, and automated summarization of scientific PDF documents, driven by natural language instructions. DocRefine leverages the power of advanced LVLMs (e.g., GPT-4o) by orchestrating a sophisticated multi-agent system comprising six specialized and collaborative agents: Layout & Structure Analysis, Multimodal Content Understanding, Instruction Decomposition, Content Refinement, Summarization & Generation, and Fidelity & Consistency Verification. This closed-loop feedback architecture ensures high semantic accuracy and visual fidelity. Evaluated on the comprehensive DocEditBench dataset, DocRefine consistently outperforms state-of-the-art baselines across various tasks, achieving overall scores of 86.7% for Semantic Consistency Score (SCS), 93.9% for Layout Fidelity Index (LFI), and 85.0% for Instruction Adherence Rate (IAR). These results demonstrate DocRefine's superior capability in handling complex multimodal document editing, preserving semantic integrity, and maintaining visual consistency, marking a significant advancement in automated scientific document processing.
Via

Aug 01, 2025
Abstract:Optical Character Recognition (OCR) for mathematical formula is essential for the intelligent analysis of scientific literature. However, both task-specific and general vision-language models often struggle to handle the structural diversity, complexity, and real-world variability inherent in mathematical content. In this work, we present DocTron-Formula, a unified framework built upon general vision-language models, thereby eliminating the need for specialized architectures. Furthermore, we introduce CSFormula, a large-scale and challenging dataset that encompasses multidisciplinary and structurally complex formulas at the line, paragraph, and page levels. Through straightforward supervised fine-tuning, our approach achieves state-of-the-art performance across a variety of styles, scientific domains, and complex layouts. Experimental results demonstrate that our method not only surpasses specialized models in terms of accuracy and robustness, but also establishes a new paradigm for the automated understanding of complex scientific documents.
Via

Jun 13, 2025
Abstract:This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input to traditional clustering algorithms such as $k$-Means and DBSCAN. Our method aims to achieve a finer-grained document understanding by not only grouping documents at the type level (e.g., invoices, purchase orders), but also distinguishing between different templates within the same document category. This is achieved by using embeddings that capture textual content, layout information, and visual features of documents. We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pretrained multimodal models, including SBERT, LayoutLMv1, LayoutLMv3, DiT, Donut, and ColPali. Our findings demonstrate the potential of multimodal embeddings to significantly enhance document clustering, offering benefits for various applications in intelligent document processing, document layout analysis, and unsupervised document classification. This work provides valuable insight into the advantages and limitations of different multimodal models for this task and opens new avenues for future research to understand and organize document collections.
* 17 pages, 10 figures
Via

Jun 14, 2025
Abstract:Multimodal document retrieval systems enable information access across text, images, and layouts, benefiting various domains like document-based question answering, report analysis, and interactive content summarization. Rerankers improve retrieval precision by reordering retrieved candidates. However, current multimodal reranking methods remain underexplored, with significant room for improvement in both training strategies and overall effectiveness. Moreover, the lack of explicit reasoning makes it difficult to analyze and optimize these methods further. In this paper, We propose MM-R5, a MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval, aiming to provide a more effective and reliable solution for multimodal reranking tasks. MM-R5 is trained in two stages: supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we focus on improving instruction-following and guiding the model to generate complete and high-quality reasoning chains. To support this, we introduce a novel data construction strategy that produces rich, high-quality reasoning data. In the RL stage, we design a task-specific reward framework, including a reranking reward tailored for multimodal candidates and a composite template-based reward to further refine reasoning quality. We conduct extensive experiments on MMDocIR, a challenging public benchmark spanning multiple domains. MM-R5 achieves state-of-the-art performance on most metrics and delivers comparable results to much larger models on the remaining ones. Moreover, compared to the best retrieval-only method, MM-R5 improves recall@1 by over 4%. These results validate the effectiveness of our reasoning-enhanced training pipeline.
Via

May 20, 2025
Abstract:With the increasing adoption of Large Language Models (LLMs) and Vision-Language Models (VLMs), rich document analysis technologies for applications like Retrieval-Augmented Generation (RAG) and visual RAG are gaining significant attention. Recent research indicates that using VLMs can achieve better RAG performance, but processing rich documents still remains a challenge since a single page contains large amounts of information. In this paper, we present SCAN (\textbf{S}emanti\textbf{C} Document Layout \textbf{AN}alysis), a novel approach enhancing both textual and visual Retrieval-Augmented Generation (RAG) systems working with visually rich documents. It is a VLM-friendly approach that identifies document components with appropriate semantic granularity, balancing context preservation with processing efficiency. SCAN uses a coarse-grained semantic approach that divides documents into coherent regions covering continuous components. We trained the SCAN model by fine-tuning object detection models with sophisticated annotation datasets. Our experimental results across English and Japanese datasets demonstrate that applying SCAN improves end-to-end textual RAG performance by up to 9.0\% and visual RAG performance by up to 6.4\%, outperforming conventional approaches and even commercial document processing solutions.
* v1
Via

Jun 11, 2025
Abstract:Retrieving accurate details from documents is a crucial task, especially when handling a combination of scanned images and native digital formats. This document presents a combined framework for text extraction that merges Optical Character Recognition (OCR) techniques with Large Language Models (LLMs) to deliver structured outputs enriched by contextual understanding and confidence indicators. Scanned files are processed using OCR engines, while digital files are interpreted through layout-aware libraries. The extracted raw text is subsequently analyzed by an LLM to identify key-value pairs and resolve ambiguities. A comparative analysis of different OCR tools is presented to evaluate their effectiveness concerning accuracy, layout recognition, and processing speed. The approach demonstrates significant improvements over traditional rule-based and template-based methods, offering enhanced flexibility and semantic precision across different document categories
Via

Jun 05, 2025
Abstract:We introduce MonkeyOCR, a vision-language model for document parsing that advances the state of the art by leveraging a Structure-Recognition-Relation (SRR) triplet paradigm. This design simplifies what would otherwise be a complex multi-tool pipeline (as in MinerU's modular approach) and avoids the inefficiencies of processing full pages with giant end-to-end models (e.g., large multimodal LLMs like Qwen-VL). In SRR, document parsing is abstracted into three fundamental questions - "Where is it?" (structure), "What is it?" (recognition), and "How is it organized?" (relation) - corresponding to layout analysis, content identification, and logical ordering. This focused decomposition balances accuracy and speed: it enables efficient, scalable processing without sacrificing precision. To train and evaluate this approach, we introduce the MonkeyDoc (the most comprehensive document parsing dataset to date), with 3.9 million instances spanning over ten document types in both Chinese and English. Experiments show that MonkeyOCR outperforms MinerU by an average of 5.1%, with particularly notable improvements on challenging content such as formulas (+15.0%) and tables (+8.6%). Remarkably, our 3B-parameter model surpasses much larger and top-performing models, including Qwen2.5-VL (72B) and Gemini 2.5 Pro, achieving state-of-the-art average performance on English document parsing tasks. In addition, MonkeyOCR processes multi-page documents significantly faster (0.84 pages per second compared to 0.65 for MinerU and 0.12 for Qwen2.5-VL-7B). The 3B model can be efficiently deployed for inference on a single NVIDIA 3090 GPU. Code and models will be released at https://github.com/Yuliang-Liu/MonkeyOCR.
Via

Jun 09, 2025
Abstract:This article presents a large-scale effort to create a structured dataset of internal migration in Finland between 1800 and 1920 using digitized church moving records. These records, maintained by Evangelical-Lutheran parishes, document the migration of individuals and families and offer a valuable source for studying historical demographic patterns. The dataset includes over six million entries extracted from approximately 200,000 images of handwritten migration records. The data extraction process was automated using a deep learning pipeline that included layout analysis, table detection, cell classification, and handwriting recognition. The complete pipeline was applied to all images, resulting in a structured dataset suitable for research. The dataset can be used to study internal migration, urbanization, and family migration, and the spread of disease in preindustrial Finland. A case study from the Elim\"aki parish shows how local migration histories can be reconstructed. The work demonstrates how large volumes of handwritten archival material can be transformed into structured data to support historical and demographic research.
Via
