Abstract:This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input to traditional clustering algorithms such as $k$-Means and DBSCAN. Our method aims to achieve a finer-grained document understanding by not only grouping documents at the type level (e.g., invoices, purchase orders), but also distinguishing between different templates within the same document category. This is achieved by using embeddings that capture textual content, layout information, and visual features of documents. We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pretrained multimodal models, including SBERT, LayoutLMv1, LayoutLMv3, DiT, Donut, and ColPali. Our findings demonstrate the potential of multimodal embeddings to significantly enhance document clustering, offering benefits for various applications in intelligent document processing, document layout analysis, and unsupervised document classification. This work provides valuable insight into the advantages and limitations of different multimodal models for this task and opens new avenues for future research to understand and organize document collections.
Abstract:The fast-growing need for grey-box and black-box optimization methods for constrained global optimization problems in fields such as medicine, chemistry, engineering and artificial intelligence, has contributed for the design of new efficient algorithms for finding the best possible solution. In this work, we present DEFT-FUNNEL, an open-source global optimization algorithm for general constrained grey-box and black-box problems that belongs to the class of trust-region sequential quadratic optimization algorithms. It extends the previous works by Sampaio and Toint (2015, 2016) to a global optimization solver that is able to exploit information from closed-form functions. Polynomial interpolation models are used as surrogates for the black-box functions and a clustering-based multistart strategy is applied for searching for the global minima. Numerical experiments show that DEFT-FUNNEL compares favorably with other state-of-the-art methods on two sets of benchmark problems: one set containing problems where every function is a black box and another set with problems where some of the functions and their derivatives are known to the solver. The code as well as the test sets used for experiments are available at the Github repository http://github.com/phrsampaio/deft-funnel.