Abstract:In this paper, we conduct experiment to analyze whether models can classify offensive texts better with the help of sentiment. We conduct this experiment on the SemEval 2019 task 6, OLID, dataset. First, we utilize pre-trained language models to predict the sentiment of each instance. Later we pick the model that achieved the best performance on the OLID test set, and train it on the augmented OLID set to analyze the performance. Results show that utilizing sentiment increases the overall performance of the model.
Abstract:Sentiment analysis (SA) in Bengali is challenging due to this Indo-Aryan language's highly inflected properties with more than 160 different inflected forms for verbs and 36 different forms for noun and 24 different forms for pronouns. The lack of standard labeled datasets in the Bengali domain makes the task of SA even harder. In this paper, we present manually tagged 2-class and 3-class SA datasets in Bengali. We also demonstrate that the multi-lingual BERT model with relevant extensions can be trained via the approach of transfer learning over those novel datasets to improve the state-of-the-art performance in sentiment classification tasks. This deep learning model achieves an accuracy of 71\% for 2-class sentiment classification compared to the current state-of-the-art accuracy of 68\%. We also present the very first Bengali SA classifier for the 3-class manually tagged dataset, and our proposed model achieves an accuracy of 60\%. We further use this model to analyze the sentiment of public comments in the online daily newspaper. Our analysis shows that people post negative comments for political or sports news more often, while the religious article comments represent positive sentiment. The dataset and code is publicly available at https://github.com/KhondokerIslam/Bengali\_Sentiment.