Diffusion models are a class of generative models that learn the probability distribution of data by iteratively applying a series of transformations to a simple base distribution. They have been used in various applications, including image generation, text generation, and density estimation.
We present a conditional diffusion model for electromagnetic inverse design that generates structured media geometries directly from target differential scattering cross-section profiles, bypassing expensive iterative optimization. Our 1D U-Net architecture with Feature-wise Linear Modulation learns to map desired angular scattering patterns to 2x2 dielectric sphere structure, naturally handling the non-uniqueness of inverse problems by sampling diverse valid designs. Trained on 11,000 simulated metasurfaces, the model achieves median MPE below 19% on unseen targets (best: 1.39%), outperforming CMA-ES evolutionary optimization while reducing design time from hours to seconds. These results demonstrate that employing diffusion models is promising for advancing electromagnetic inverse design research, potentially enabling rapid exploration of complex metasurface architectures and accelerating the development of next-generation photonic and wireless communication systems. The code is publicly available at https://github.com/mikzuker/inverse_design_metasurface_generation.
A major bottleneck of standard auto-regressive large language models is that their inference process is inherently sequential, resulting in very long and costly inference times. To circumvent this, practitioners proposed a class of language models called diffusion language models, of which the masked diffusion model (MDM) is the most successful. The MDM is able to sample tokens out-of-order and, ostensibly, many tokens at once and in parallel. However, there is very limited rigorous understanding of how much parallel sampling these models can perform without noticeable degradation in their sampling performance. Prior work of Li and Cai obtained some preliminary bounds, but these are not tight for many natural classes of distributions. In this work, we give a new, exact characterization of the expected divergence between the true distribution and the sampled distribution, for any distribution and any unmasking schedule for the sampler, showing an elegant connection to the theory of univariate function approximation. By leveraging this connection, we then attain a number of novel lower and upper bounds for this problem. While the connection to function approximation in principle gives the optimal unmasking schedule for any distribution, we show that it is in general impossible to compete with it without strong a priori knowledge of the distribution, even in seemingly benign settings. However, we also demonstrate new upper bounds and new sampling schedules in terms of well-studied information-theoretic properties of the base distribution, namely, its total correlation and dual total correlation, which show that in some natural settings, one can sample in $O(log n)$ steps without any visible loss in performance, where $n$ is the total sequence length.
Most text-to-video(T2V) diffusion models depend on pre-trained text encoders for semantic alignment, yet they often fail to maintain video quality when provided with concise prompts rather than well-designed ones. The primary issue lies in their limited textual semantics understanding. Moreover, these text encoders cannot rephrase prompts online to better align with user intentions, which limits both the scalability and usability of the models, To address these challenges, we introduce RISE-T2V, which uniquely integrates the processes of prompt rephrasing and semantic feature extraction into a single and seamless step instead of two separate steps. RISE-T2V is universal and can be applied to various pre-trained LLMs and video diffusion models(VDMs), significantly enhancing their capabilities for T2V tasks. We propose an innovative module called the Rephrasing Adapter, enabling diffusion models to utilize text hidden states during the next token prediction of the LLM as a condition for video generation. By employing a Rephrasing Adapter, the video generation model can implicitly rephrase basic prompts into more comprehensive representations that better match the user's intent. Furthermore, we leverage the powerful capabilities of LLMs to enable video generation models to accomplish a broader range of T2V tasks. Extensive experiments demonstrate that RISE-T2V is a versatile framework applicable to different video diffusion model architectures, significantly enhancing the ability of T2V models to generate high-quality videos that align with user intent. Visual results are available on the webpage at https://rise-t2v.github.io.
We derive a deterministic, non-asymptotic upper bound on the Kullback-Leibler (KL) divergence of the flow-matching distribution approximation. In particular, if the $L_2$ flow-matching loss is bounded by $\epsilon^2 > 0$, then the KL divergence between the true data distribution and the estimated distribution is bounded by $A_1 \epsilon + A_2 \epsilon^2$. Here, the constants $A_1$ and $A_2$ depend only on the regularities of the data and velocity fields. Consequently, this bound implies statistical convergence rates of Flow Matching Transformers under the Total Variation (TV) distance. We show that, flow matching achieves nearly minimax-optimal efficiency in estimating smooth distributions. Our results make the statistical efficiency of flow matching comparable to that of diffusion models under the TV distance. Numerical studies on synthetic and learned velocities corroborate our theory.
Recent advances in text-to-image generative models have raised concerns about their potential to produce harmful content when provided with malicious input text prompts. To address this issue, two main approaches have emerged: (1) fine-tuning the model to unlearn harmful concepts and (2) training-free guidance methods that leverage negative prompts. However, we observe that combining these two orthogonal approaches often leads to marginal or even degraded defense performance. This observation indicates a critical incompatibility between two paradigms, which hinders their combined effectiveness. In this work, we address this issue by proposing a conceptually simple yet experimentally robust method: replacing the negative prompts used in training-free methods with implicit negative embeddings obtained through concept inversion. Our method requires no modification to either approach and can be easily integrated into existing pipelines. We experimentally validate its effectiveness on nudity and violence benchmarks, demonstrating consistent improvements in defense success rate while preserving the core semantics of input prompts.
Given a dataset of expert trajectories, standard imitation learning approaches typically learn a direct mapping from observations (e.g., RGB images) to actions. However, such methods often overlook the rich interplay between different modalities, i.e., sensory inputs, actions, and rewards, which is crucial for modeling robot behavior and understanding task outcomes. In this work, we propose Multimodal Diffusion Forcing, a unified framework for learning from multimodal robot trajectories that extends beyond action generation. Rather than modeling a fixed distribution, MDF applies random partial masking and trains a diffusion model to reconstruct the trajectory. This training objective encourages the model to learn temporal and cross-modal dependencies, such as predicting the effects of actions on force signals or inferring states from partial observations. We evaluate MDF on contact-rich, forceful manipulation tasks in simulated and real-world environments. Our results show that MDF not only delivers versatile functionalities, but also achieves strong performance, and robustness under noisy observations. More visualizations can be found on our website https://unified-df.github.io
Functional brain graphs are often characterized with separate graph-theoretic or spectral descriptors, overlooking how these properties covary and partially overlap across brains and conditions. We anticipate that dense, weighted functional connectivity graphs occupy a low-dimensional latent geometry along which both topological and spectral structures display graded variations. Here, we estimated this unified graph representation and enabled generation of dense functional brain graphs through a graph transformer autoencoder with latent diffusion, with spectral geometry providing an inductive bias to guide learning. This geometry-aware latent representation, although unsupervised, meaningfully separated working-memory states and decoded visual stimuli, with performance further enhanced by incorporating neural dynamics. From the diffusion modeled distribution, we were able to sample biologically plausible and structurally grounded synthetic dense graphs.
Recent breakthroughs in language-queried audio source separation (LASS) have shown that generative models can achieve higher separation audio quality than traditional masking-based approaches. However, two key limitations restrict their practical use: (1) users often require operations beyond separation, such as sound removal; and (2) relying solely on text prompts can be unintuitive for specifying sound sources. In this paper, we propose PromptSep to extend LASS into a broader framework for general-purpose sound separation. PromptSep leverages a conditional diffusion model enhanced with elaborated data simulation to enable both audio extraction and sound removal. To move beyond text-only queries, we incorporate vocal imitation as an additional and more intuitive conditioning modality for our model, by incorporating Sketch2Sound as a data augmentation strategy. Both objective and subjective evaluations on multiple benchmarks demonstrate that PromptSep achieves state-of-the-art performance in sound removal and vocal-imitation-guided source separation, while maintaining competitive results on language-queried source separation.
Determining the binding pose of a ligand to a protein, known as molecular docking, is a fundamental task in drug discovery. Generative approaches promise faster, improved, and more diverse pose sampling than physics-based methods, but are often hindered by chemically implausible outputs, poor generalisability, and high computational cost. To address these challenges, we introduce a novel fragmentation scheme, leveraging inductive biases from structural chemistry, to decompose ligands into rigid-body fragments. Building on this decomposition, we present SigmaDock, an SE(3) Riemannian diffusion model that generates poses by learning to reassemble these rigid bodies within the binding pocket. By operating at the level of fragments in SE(3), SigmaDock exploits well-established geometric priors while avoiding overly complex diffusion processes and unstable training dynamics. Experimentally, we show SigmaDock achieves state-of-the-art performance, reaching Top-1 success rates (RMSD<2 & PB-valid) above 79.9% on the PoseBusters set, compared to 12.7-30.8% reported by recent deep learning approaches, whilst demonstrating consistent generalisation to unseen proteins. SigmaDock is the first deep learning approach to surpass classical physics-based docking under the PB train-test split, marking a significant leap forward in the reliability and feasibility of deep learning for molecular modelling.
SDE-based methods such as denoising diffusion probabilistic models (DDPMs) have shown remarkable success in real-world sample generation tasks. Prior analyses of DDPMs have been focused on the exponential Euler discretization, showing guarantees that generally depend at least linearly on the dimension or initial Fisher information. Inspired by works in log-concave sampling (Shen and Lee, 2019), we analyze an integrator -- the denoising diffusion randomized midpoint method (DDRaM) -- that leverages an additional randomized midpoint to better approximate the SDE. Using a recently-developed analytic framework called the "shifted composition rule", we show that this algorithm enjoys favorable discretization properties under appropriate smoothness assumptions, with sublinear $\widetilde{O}(\sqrt{d})$ score evaluations needed to ensure convergence. This is the first sublinear complexity bound for pure DDPM sampling -- prior works which obtained such bounds worked instead with ODE-based sampling and had to make modifications to the sampler which deviate from how they are used in practice. We also provide experimental validation of the advantages of our method, showing that it performs well in practice with pre-trained image synthesis models.