What is Deepfakes? Deepfakes are synthetic media in which a person's likeness is replaced with someone else's likeness using deep-learning techniques.
Papers and Code
Apr 30, 2025
Abstract:Audio deepfakes represent a growing threat to digital security and trust, leveraging advanced generative models to produce synthetic speech that closely mimics real human voices. Detecting such manipulations is especially challenging under open-world conditions, where spoofing methods encountered during testing may differ from those seen during training. In this work, we propose an end-to-end deep learning framework for audio deepfake detection that operates directly on raw waveforms. Our model, RawNetLite, is a lightweight convolutional-recurrent architecture designed to capture both spectral and temporal features without handcrafted preprocessing. To enhance robustness, we introduce a training strategy that combines data from multiple domains and adopts Focal Loss to emphasize difficult or ambiguous samples. We further demonstrate that incorporating codec-based manipulations and applying waveform-level audio augmentations (e.g., pitch shifting, noise, and time stretching) leads to significant generalization improvements under realistic acoustic conditions. The proposed model achieves over 99.7% F1 and 0.25% EER on in-domain data (FakeOrReal), and up to 83.4% F1 with 16.4% EER on a challenging out-of-distribution test set (AVSpoof2021 + CodecFake). These findings highlight the importance of diverse training data, tailored objective functions and audio augmentations in building resilient and generalizable audio forgery detectors. Code and pretrained models are available at https://iplab.dmi.unict.it/mfs/Deepfakes/PaperRawNet2025/.
Via

Apr 29, 2025
Abstract:The emergence of diffusion models has facilitated the generation of speech with reinforced fidelity and naturalness. While deepfake detection technologies have manifested the ability to identify AI-generated content, their efficacy decreases as generative models become increasingly sophisticated. Furthermore, current research in the field has not adequately addressed the necessity for robust watermarking to safeguard the intellectual property rights associated with synthetic speech and generative models. To remedy this deficiency, we propose a \textbf{ro}bust generative \textbf{s}peech wat\textbf{e}rmarking method (TriniMark) for authenticating the generated content and safeguarding the copyrights by enabling the traceability of the diffusion model. We first design a structure-lightweight watermark encoder that embeds watermarks into the time-domain features of speech and reconstructs the waveform directly. A temporal-aware gated convolutional network is meticulously designed in the watermark decoder for bit-wise watermark recovery. Subsequently, the waveform-guided fine-tuning strategy is proposed for fine-tuning the diffusion model, which leverages the transferability of watermarks and enables the diffusion model to incorporate watermark knowledge effectively. When an attacker trains a surrogate model using the outputs of the target model, the embedded watermark can still be learned by the surrogate model and correctly extracted. Comparative experiments with state-of-the-art methods demonstrate the superior robustness of our method, particularly in countering compound attacks.
Via

Apr 29, 2025
Abstract:Training and deploying deepfake detection models on edge devices offers the advantage of maintaining data privacy and confidentiality by processing it close to its source. However, this approach is constrained by the limited computational and memory resources available at the edge. To address this challenge, we explore compression techniques to reduce computational demands and inference time, alongside transfer learning methods to minimize training overhead. Using the Synthbuster, RAISE, and ForenSynths datasets, we evaluate the effectiveness of pruning, knowledge distillation (KD), quantization, fine-tuning, and adapter-based techniques. Our experimental results demonstrate that both compression and transfer learning can be effectively achieved, even with a high compression level of 90%, remaining at the same performance level when the training and validation data originate from the same DeepFake model. However, when the testing dataset is generated by DeepFake models not present in the training set, a domain generalization issue becomes evident.
Via

Apr 27, 2025
Abstract:The integration of Artificial Intelligence(AI) into film production has revolutionized efficiency and creativity, yet it simultaneously raises critical ethical and practical challenges. This study explores the dual impact of AI on modern cinema through three objectives: defining the optimal human-AI relationship, balancing creativity with automation, and developing ethical guidelines. By employing a mixed-method approach combining theoretical frameworks (auteur theory, human-technology relations) and case studies (The Safe Zone, Fast & Furious 7, The Brutalist), the research reveals that positioning AI as an "embodiment tool" rather than an independent "alterity partner" preserves human authorship and artistic integrity. Key findings highlight the risks of surveillance capitalism in AI-driven markets and the ethical dilemmas of deepfake technology. The study concludes with actionable recommendations, including international regulatory frameworks and a Human Control Index (HCI) to quantify AI involvement. These insights aim to guide filmmakers, policymakers, and scholars in navigating the evolving AI-cinema landscape while safeguarding cultural diversity and ethical standards.
* 19 pages, 1 figures, 2 tables
Via

Apr 27, 2025
Abstract:The rapid evolution of deepfake technology, particularly in instruction-guided image editing, threatens the integrity of digital images by enabling subtle, context-aware manipulations. Generated conditionally from real images and textual prompts, these edits are often imperceptible to both humans and existing detection systems, revealing significant limitations in current defenses. We propose a novel multimodal capsule network, CapsFake, designed to detect such deepfake image edits by integrating low-level capsules from visual, textual, and frequency-domain modalities. High-level capsules, predicted through a competitive routing mechanism, dynamically aggregate local features to identify manipulated regions with precision. Evaluated on diverse datasets, including MagicBrush, Unsplash Edits, Open Images Edits, and Multi-turn Edits, CapsFake outperforms state-of-the-art methods by up to 20% in detection accuracy. Ablation studies validate its robustness, achieving detection rates above 94% under natural perturbations and 96% against adversarial attacks, with excellent generalization to unseen editing scenarios. This approach establishes a powerful framework for countering sophisticated image manipulations.
* 20 pages
Via

Apr 24, 2025
Abstract:The rapid evolution of deep generative models poses a critical challenge to deepfake detection, as detectors trained on forgery-specific artifacts often suffer significant performance degradation when encountering unseen forgeries. While existing methods predominantly rely on spatial domain analysis, frequency domain operations are primarily limited to feature-level augmentation, leaving frequency-native artifacts and spatial-frequency interactions insufficiently exploited. To address this limitation, we propose a novel detection framework that integrates multi-scale spatial-frequency analysis for universal deepfake detection. Our framework comprises three key components: (1) a local spectral feature extraction pipeline that combines block-wise discrete cosine transform with cascaded multi-scale convolutions to capture subtle spectral artifacts; (2) a global spectral feature extraction pipeline utilizing scale-invariant differential accumulation to identify holistic forgery distribution patterns; and (3) a multi-stage cross-modal fusion mechanism that incorporates shallow-layer attention enhancement and deep-layer dynamic modulation to model spatial-frequency interactions. Extensive evaluations on widely adopted benchmarks demonstrate that our method outperforms state-of-the-art deepfake detection methods in both accuracy and generalizability.
Via

Apr 19, 2025
Abstract:The challenge of tracing the source attribution of forged faces has gained significant attention due to the rapid advancement of generative models. However, existing deepfake attribution (DFA) works primarily focus on the interaction among various domains in vision modality, and other modalities such as texts and face parsing are not fully explored. Besides, they tend to fail to assess the generalization performance of deepfake attributors to unseen generators in a fine-grained manner. In this paper, we propose a novel bi-modal guided multi-perspective representation learning (BMRL) framework for zero-shot deepfake attribution (ZS-DFA), which facilitates effective traceability to unseen generators. Specifically, we design a multi-perspective visual encoder (MPVE) to explore general deepfake attribution visual characteristics across three views (i.e., image, noise, and edge). We devise a novel parsing encoder to focus on global face attribute embeddings, enabling parsing-guided DFA representation learning via vision-parsing matching. A language encoder is proposed to capture fine-grained language embeddings, facilitating language-guided general visual forgery representation learning through vision-language alignment. Additionally, we present a novel deepfake attribution contrastive center (DFACC) loss, to pull relevant generators closer and push irrelevant ones away, which can be introduced into DFA models to enhance traceability. Experimental results demonstrate that our method outperforms the state-of-the-art on the ZS-DFA task through various protocols evaluation.
Via

Apr 18, 2025
Abstract:Advancements in image generation technologies have raised significant concerns about their potential misuse, such as producing misinformation and deepfakes. Therefore, there is an urgent need for effective methods to detect AI-generated images (AIGI). Despite progress in AIGI detection, achieving reliable performance across diverse generation models and scenes remains challenging due to the lack of source-invariant features and limited generalization capabilities in existing methods. In this work, we explore the potential of using image entropy as a cue for AIGI detection and propose Multi-granularity Local Entropy Patterns (MLEP), a set of entropy feature maps computed across shuffled small patches over multiple image scaled. MLEP comprehensively captures pixel relationships across dimensions and scales while significantly disrupting image semantics, reducing potential content bias. Leveraging MLEP, a robust CNN-based classifier for AIGI detection can be trained. Extensive experiments conducted in an open-world scenario, evaluating images synthesized by 32 distinct generative models, demonstrate significant improvements over state-of-the-art methods in both accuracy and generalization.
* 9 pages, 6 figures
Via

Apr 16, 2025
Abstract:Existing Audio Deepfake Detection (ADD) systems often struggle to generalise effectively due to the significantly degraded audio quality caused by audio codec compression and channel transmission effects in real-world communication scenarios. To address this challenge, we developed a rigorous benchmark to evaluate ADD system performance under such scenarios. We introduced ADD-C, a new test dataset to evaluate the robustness of ADD systems under diverse communication conditions, including different combinations of audio codecs for compression and Packet Loss Rates (PLR). Benchmarking on three baseline ADD models with the ADD-C dataset demonstrated a significant decline in robustness under such conditions. A novel data augmentation strategy was proposed to improve the robustness of ADD systems. Experimental results demonstrated that the proposed approach increases the performance of ADD systems significantly with the proposed ADD-C dataset. Our benchmark can assist future efforts towards building practical and robustly generalisable ADD systems.
* 5 pages, 3 figures, submitted to EUSIPCO 2025
Via

Apr 15, 2025
Abstract:Generalizability, the capacity of a robust model to perform effectively on unseen data, is crucial for audio deepfake detection due to the rapid evolution of text-to-speech (TTS) and voice conversion (VC) technologies. A promising approach to differentiate between bonafide and spoof samples lies in identifying intrinsic disparities to enhance model generalizability. From an information-theoretic perspective, we hypothesize the information content is one of the intrinsic differences: bonafide sample represents a dense, information-rich sampling of the real world, whereas spoof sample is typically derived from lower-dimensional, less informative representations. To implement this, we introduce frame-level latent information entropy detector(f-InfoED), a framework that extracts distinctive information entropy from latent representations at the frame level to identify audio deepfakes. Furthermore, we present AdaLAM, which extends large pre-trained audio models with trainable adapters for enhanced feature extraction. To facilitate comprehensive evaluation, the audio deepfake forensics 2024 (ADFF 2024) dataset was built by the latest TTS and VC methods. Extensive experiments demonstrate that our proposed approach achieves state-of-the-art performance and exhibits remarkable generalization capabilities. Further analytical studies confirms the efficacy of AdaLAM in extracting discriminative audio features and f-InfoED in leveraging latent entropy information for more generalized deepfake detection.
* Accpeted by IEEE International Conference on Multimedia & Expo 2025
(ICME 2025)
Via
