Decoding visual experiences from human brain activity remains a central challenge at the intersection of neuroscience, neuroimaging, and artificial intelligence. A critical obstacle is the inherent variability of cortical responses: neural activity elicited by the same visual stimulus differs across individuals and trials due to anatomical, functional, cognitive, and experimental factors, making fMRI-to-image reconstruction non-injective. In this paper, we tackle a challenging yet practically meaningful problem: zero-shot cross-subject fMRI-to-image reconstruction, where the visual experience of a previously unseen individual must be reconstructed without subject-specific training. To enable principled evaluation, we present a unified cortical-surface dataset -- UniCortex-fMRI, assembled from multiple visual-stimulus fMRI datasets to provide broad coverage of subjects and stimuli. Our UniCortex-fMRI is particularly processed by standardized data formats to make it possible to explore this possibility in the zero-shot scenario of cross-subject fMRI-to-image reconstruction. To tackle the modeling challenge, we propose PictorialCortex, which models fMRI activity using a compositional latent formulation that structures stimulus-driven representations under subject-, dataset-, and trial-related variability. PictorialCortex operates in a universal cortical latent space and implements this formulation through a latent factorization--composition module, reinforced by paired factorization and re-factorizing consistency regularization. During inference, surrogate latents synthesized under multiple seen-subject conditions are aggregated to guide diffusion-based image synthesis for unseen subjects. Extensive experiments show that PictorialCortex improves zero-shot cross-subject visual reconstruction, highlighting the benefits of compositional latent modeling and multi-dataset training.
Recent advances in fMRI-based image reconstruction have achieved remarkable photo-realistic fidelity. Yet, a persistent limitation remains: while reconstructed images often appear naturalistic and holistically similar to the target stimuli, they frequently suffer from severe semantic misalignment -- salient objects are often replaced or hallucinated despite high visual quality. In this work, we address this limitation by rethinking the role of explicit semantic interpretation in fMRI decoding. We argue that existing methods rely too heavily on entangled visual embeddings which prioritize low-level appearance cues -- such as texture and global gist -- over explicit semantic identity. To overcome this, we parse fMRI signals into rich, sentence-level semantic descriptions that mirror the hierarchical and compositional nature of human visual understanding. We achieve this by leveraging grounded VLMs to generate synthetic, human-like, multi-granularity textual representations that capture object identities and spatial organization. Built upon this foundation, we propose SynMind, a framework that integrates these explicit semantic encodings with visual priors to condition a pretrained diffusion model. Extensive experiments demonstrate that SynMind outperforms state-of-the-art methods across most quantitative metrics. Notably, by offloading semantic reasoning to our text-alignment module, SynMind surpasses competing methods based on SDXL while using the much smaller Stable Diffusion 1.4 and a single consumer GPU. Large-scale human evaluations further confirm that SynMind produces reconstructions more consistent with human visual perception. Neurovisualization analyses reveal that SynMind engages broader and more semantically relevant brain regions, mitigating the over-reliance on high-level visual areas.
Reconstructing natural visual scenes from neural activity is a key challenge in neuroscience and computer vision. We present SpikeVAEDiff, a novel two-stage framework that combines a Very Deep Variational Autoencoder (VDVAE) and the Versatile Diffusion model to generate high-resolution and semantically meaningful image reconstructions from neural spike data. In the first stage, VDVAE produces low-resolution preliminary reconstructions by mapping neural spike signals to latent representations. In the second stage, regression models map neural spike signals to CLIP-Vision and CLIP-Text features, enabling Versatile Diffusion to refine the images via image-to-image generation. We evaluate our approach on the Allen Visual Coding-Neuropixels dataset and analyze different brain regions. Our results show that the VISI region exhibits the most prominent activation and plays a key role in reconstruction quality. We present both successful and unsuccessful reconstruction examples, reflecting the challenges of decoding neural activity. Compared with fMRI-based approaches, spike data provides superior temporal and spatial resolution. We further validate the effectiveness of the VDVAE model and conduct ablation studies demonstrating that data from specific brain regions significantly enhances reconstruction performance.




Multimodal brain decoding aims to reconstruct semantic information that is consistent with visual stimuli from brain activity signals such as fMRI, and then generate readable natural language descriptions. However, multimodal brain decoding still faces key challenges in cross-subject generalization and interpretability. We propose a BrainROI model and achieve leading-level results in brain-captioning evaluation on the NSD dataset. Under the cross-subject setting, compared with recent state-of-the-art methods and representative baselines, metrics such as BLEU-4 and CIDEr show clear improvements. Firstly, to address the heterogeneity of functional brain topology across subjects, we design a new fMRI encoder. We use multi-atlas soft functional parcellations (soft-ROI) as a shared space. We extend the discrete ROI Concatenation strategy in MINDLLM to a voxel-wise gated fusion mechanism (Voxel-gate). We also ensure consistent ROI mapping through global label alignment, which enhances cross-subject transferability. Secondly, to overcome the limitations of manual and black-box prompting methods in stability and transparency, we introduce an interpretable prompt optimization process. In a small-sample closed loop, we use a locally deployed Qwen model to iteratively generate and select human-readable prompts. This process improves the stability of prompt design and preserves an auditable optimization trajectory. Finally, we impose parameterized decoding constraints during inference to further improve the stability and quality of the generated descriptions.




Mapping human brain activity to natural images offers a new window into vision and cognition, yet current diffusion-based decoders face a core difficulty: most condition directly on fMRI features without analyzing how visual information is organized across the cortex. This overlooks the brain's hierarchical processing and blurs the roles of early, middle, and late visual areas. We propose Hi-DREAM, a brain-inspired conditional diffusion framework that makes the cortical organization explicit. A region-of-interest (ROI) adapter groups fMRI into early/mid/late streams and converts them into a multi-scale cortical pyramid aligned with the U-Net depth (shallow scales preserve layout and edges; deeper scales emphasize objects and semantics). A lightweight, depth-matched ControlNet injects these scale-specific hints during denoising. The result is an efficient and interpretable decoder in which each signal plays a brain-like role, allowing the model not only to reconstruct images but also to illuminate functional contributions of different visual areas. Experiments on the Natural Scenes Dataset (NSD) show that Hi-DREAM attains state-of-the-art performance on high-level semantic metrics while maintaining competitive low-level fidelity. These findings suggest that structuring conditioning by cortical hierarchy is a powerful alternative to purely data-driven embeddings and provides a useful lens for studying the visual cortex.
Recent advances in neural decoding have enabled the reconstruction of visual experiences from brain activity, positioning fMRI-to-image reconstruction as a promising bridge between neuroscience and computer vision. However, current methods predominantly rely on subject-specific models or require subject-specific fine-tuning, limiting their scalability and real-world applicability. In this work, we introduce ZEBRA, the first zero-shot brain visual decoding framework that eliminates the need for subject-specific adaptation. ZEBRA is built on the key insight that fMRI representations can be decomposed into subject-related and semantic-related components. By leveraging adversarial training, our method explicitly disentangles these components to isolate subject-invariant, semantic-specific representations. This disentanglement allows ZEBRA to generalize to unseen subjects without any additional fMRI data or retraining. Extensive experiments show that ZEBRA significantly outperforms zero-shot baselines and achieves performance comparable to fully finetuned models on several metrics. Our work represents a scalable and practical step toward universal neural decoding. Code and model weights are available at: https://github.com/xmed-lab/ZEBRA.




Reconstructing images seen by people from their fMRI brain recordings provides a non-invasive window into the human brain. Despite recent progress enabled by diffusion models, current methods often lack faithfulness to the actual seen images. We present "Brain-IT", a brain-inspired approach that addresses this challenge through a Brain Interaction Transformer (BIT), allowing effective interactions between clusters of functionally-similar brain-voxels. These functional-clusters are shared by all subjects, serving as building blocks for integrating information both within and across brains. All model components are shared by all clusters & subjects, allowing efficient training with a limited amount of data. To guide the image reconstruction, BIT predicts two complementary localized patch-level image features: (i)high-level semantic features which steer the diffusion model toward the correct semantic content of the image; and (ii)low-level structural features which help to initialize the diffusion process with the correct coarse layout of the image. BIT's design enables direct flow of information from brain-voxel clusters to localized image features. Through these principles, our method achieves image reconstructions from fMRI that faithfully reconstruct the seen images, and surpass current SotA approaches both visually and by standard objective metrics. Moreover, with only 1-hour of fMRI data from a new subject, we achieve results comparable to current methods trained on full 40-hour recordings.




Unveiling visual semantics from neural signals such as EEG, MEG, and fMRI remains a fundamental challenge due to subject variability and the entangled nature of visual features. Existing approaches primarily align neural activity directly with visual embeddings, but visual-only representations often fail to capture latent semantic dimensions, limiting interpretability and deep robustness. To address these limitations, we propose Bratrix, the first end-to-end framework to achieve multimodal Language-Anchored Vision-Brain alignment. Bratrix decouples visual stimuli into hierarchical visual and linguistic semantic components, and projects both visual and brain representations into a shared latent space, enabling the formation of aligned visual-language and brain-language embeddings. To emulate human-like perceptual reliability and handle noisy neural signals, Bratrix incorporates a novel uncertainty perception module that applies uncertainty-aware weighting during alignment. By leveraging learnable language-anchored semantic matrices to enhance cross-modal correlations and employing a two-stage training strategy of single-modality pretraining followed by multimodal fine-tuning, Bratrix-M improves alignment precision. Extensive experiments on EEG, MEG, and fMRI benchmarks demonstrate that Bratrix improves retrieval, reconstruction, and captioning performance compared to state-of-the-art methods, specifically surpassing 14.3% in 200-way EEG retrieval task. Code and model are available.




Reconstructing visual information from brain activity via computer vision technology provides an intuitive understanding of visual neural mechanisms. Despite progress in decoding fMRI data with generative models, achieving accurate cross-subject reconstruction of visual stimuli remains challenging and computationally demanding. This difficulty arises from inter-subject variability in neural representations and the brain's abstract encoding of core semantic features in complex visual inputs. To address these challenges, we propose NeuroSwift, which integrates complementary adapters via diffusion: AutoKL for low-level features and CLIP for semantics. NeuroSwift's CLIP Adapter is trained on Stable Diffusion generated images paired with COCO captions to emulate higher visual cortex encoding. For cross-subject generalization, we pretrain on one subject and then fine-tune only 17 percent of parameters (fully connected layers) for new subjects, while freezing other components. This enables state-of-the-art performance with only one hour of training per subject on lightweight GPUs (three RTX 4090), and it outperforms existing methods.
Decoding images from fMRI often involves mapping brain activity to CLIP's final semantic layer. To capture finer visual details, many approaches add a parameter-intensive VAE-based pipeline. However, these approaches overlook rich object information within CLIP's intermediate layers and contradicts the brain's functionally hierarchical. We introduce BrainMCLIP, which pioneers a parameter-efficient, multi-layer fusion approach guided by human visual system's functional hierarchy, eliminating the need for such a separate VAE pathway. BrainMCLIP aligns fMRI signals from functionally distinct visual areas (low-/high-level) to corresponding intermediate and final CLIP layers, respecting functional hierarchy. We further introduce a Cross-Reconstruction strategy and a novel multi-granularity loss. Results show BrainMCLIP achieves highly competitive performance, particularly excelling on high-level semantic metrics where it matches or surpasses SOTA(state-of-the-art) methods, including those using VAE pipelines. Crucially, it achieves this with substantially fewer parameters, demonstrating a reduction of 71.7\%(Table.\ref{tab:compare_clip_vae}) compared to top VAE-based SOTA methods, by avoiding the VAE pathway. By leveraging intermediate CLIP features, it effectively captures visual details often missed by CLIP-only approaches, striking a compelling balance between semantic accuracy and detail fidelity without requiring a separate VAE pipeline.