Abstract:Multimodal pathological image understanding has garnered widespread interest due to its potential to improve diagnostic accuracy and enable personalized treatment through integrated visual and textual data. However, existing methods exhibit limited reasoning capabilities, which hamper their ability to handle complex diagnostic scenarios. Additionally, the enormous size of pathological images leads to severe computational burdens, further restricting their practical deployment. To address these limitations, we introduce a novel bilateral reinforcement learning framework comprising two synergistic branches. One reinforcement branch enhances the reasoning capability by enabling the model to learn task-specific decision processes, i.e., pathology rationales, directly from labels without explicit reasoning supervision. While the other branch dynamically allocates a tailored number of tokens to different images based on both their visual content and task context, thereby optimizing computational efficiency. We apply our method to various pathological tasks such as visual question answering, cancer subtyping, and lesion detection. Extensive experiments show an average +41.7 absolute performance improvement with 70.3% lower inference costs over the base models, achieving both reasoning accuracy and computational efficiency.
Abstract:Electrocardiograms (ECGs) are essential for diagnosing cardiovascular diseases. While previous ECG-text contrastive learning methods have shown promising results, they often overlook the incompleteness of the reports. Given an ECG, the report is generated by first identifying key waveform features and then inferring the final diagnosis through these features. Despite their importance, these waveform features are often not recorded in the report as intermediate results. Aligning ECGs with such incomplete reports impedes the model's ability to capture the ECG's waveform features and limits its understanding of diagnostic reasoning based on those features. To address this, we propose FG-CLEP (Fine-Grained Contrastive Language ECG Pre-training), which aims to recover these waveform features from incomplete reports with the help of large language models (LLMs), under the challenges of hallucinations and the non-bijective relationship between waveform features and diagnoses. Additionally, considering the frequent false negatives due to the prevalence of common diagnoses in ECGs, we introduce a semantic similarity matrix to guide contrastive learning. Furthermore, we adopt a sigmoid-based loss function to accommodate the multi-label nature of ECG-related tasks. Experiments on six datasets demonstrate that FG-CLEP outperforms state-of-the-art methods in both zero-shot prediction and linear probing across these datasets.
Abstract:Gaussian process regression is a popular model in the small data regime due to its sound uncertainty quantification and the exploitation of the smoothness of the regression function that is encountered in a wide range of practical problems. However, Gaussian processes perform sub-optimally when the degree of smoothness is non-homogeneous across the input domain. Random forest regression partially addresses this issue by providing local basis functions of variable support set sizes that are chosen in a data-driven way. However, they do so at the expense of forgoing any degree of smoothness, which often results in poor performance in the small data regime. Here, we aim to combine the advantages of both models by applying a kernel-based smoothing mechanism to a learned random forest or any other piecewise constant prediction function. As we demonstrate empirically, the resulting model consistently improves the predictive performance of the underlying random forests and, in almost all test cases, also improves the log loss of the usual uncertainty quantification based on inter-tree variance. The latter advantage can be attributed to the ability of the smoothing model to take into account the uncertainty over the exact tree-splitting locations.
Abstract:Weakly-supervised Temporal Action Localization (WTAL) has achieved notable success but still suffers from a lack of temporal annotations, leading to a performance and framework gap compared with fully-supervised methods. While recent approaches employ pseudo labels for training, three key challenges: generating high-quality pseudo labels, making full use of different priors, and optimizing training methods with noisy labels remain unresolved. Due to these perspectives, we propose PseudoFormer, a novel two-branch framework that bridges the gap between weakly and fully-supervised Temporal Action Localization (TAL). We first introduce RickerFusion, which maps all predicted action proposals to a global shared space to generate pseudo labels with better quality. Subsequently, we leverage both snippet-level and proposal-level labels with different priors from the weak branch to train the regression-based model in the full branch. Finally, the uncertainty mask and iterative refinement mechanism are applied for training with noisy pseudo labels. PseudoFormer achieves state-of-the-art WTAL results on the two commonly used benchmarks, THUMOS14 and ActivityNet1.3. Besides, extensive ablation studies demonstrate the contribution of each component of our method.
Abstract:Cultural Intelligence (CQ) refers to the ability to understand unfamiliar cultural contexts-a crucial skill for large language models (LLMs) to effectively engage with globally diverse users. While existing research often focuses on explicitly stated cultural norms, such approaches fail to capture the subtle, implicit values that underlie real-world conversations. To address this gap, we introduce CQ-Bench, a benchmark specifically designed to assess LLMs' capability to infer implicit cultural values from natural conversational contexts. We generate a multi-character conversation-based stories dataset using values from the World Value Survey and GlobalOpinions datasets, with topics including ethical, religious, social, and political. Our dataset construction pipeline includes rigorous validation procedures-incorporation, consistency, and implicitness checks-using GPT-4o, with 98.2% human-model agreement in the final validation. Our benchmark consists of three tasks of increasing complexity: attitude detection, value selection, and value extraction. We find that while o1 and Deepseek-R1 models reach human-level performance in value selection (0.809 and 0.814), they still fall short in nuanced attitude detection, with F1 scores of 0.622 and 0.635, respectively. In the value extraction task, GPT-4o-mini and o3-mini score 0.602 and 0.598, highlighting the difficulty of open-ended cultural reasoning. Notably, fine-tuning smaller models (e.g., LLaMA-3.2-3B) on only 500 culturally rich examples improves performance by over 10%, even outperforming stronger baselines (o3-mini) in some cases. Using CQ-Bench, we provide insights into the current challenges in LLMs' CQ research and suggest practical pathways for enhancing LLMs' cross-cultural reasoning abilities.
Abstract:The fine-tuning technique for text-to-image diffusion models facilitates image customization but risks privacy breaches and opinion manipulation. Current research focuses on prompt- or image-level adversarial attacks for anti-customization, yet it overlooks the correlation between these two levels and the relationship between internal modules and inputs. This hinders anti-customization performance in practical threat scenarios. We propose Dual Anti-Diffusion (DADiff), a two-stage adversarial attack targeting diffusion customization, which, for the first time, integrates the adversarial prompt-level attack into the generation process of image-level adversarial examples. In stage 1, we generate prompt-level adversarial vectors to guide the subsequent image-level attack. In stage 2, besides conducting the end-to-end attack on the UNet model, we disrupt its self- and cross-attention modules, aiming to break the correlations between image pixels and align the cross-attention results computed using instance prompts and adversarial prompt vectors within the images. Furthermore, we introduce a local random timestep gradient ensemble strategy, which updates adversarial perturbations by integrating random gradients from multiple segmented timesets. Experimental results on various mainstream facial datasets demonstrate 10%-30% improvements in cross-prompt, keyword mismatch, cross-model, and cross-mechanism anti-customization with DADiff compared to existing methods.
Abstract:While face recognition (FR) models have brought remarkable convenience in face verification and identification, they also pose substantial privacy risks to the public. Existing facial privacy protection schemes usually adopt adversarial examples to disrupt face verification of FR models. However, these schemes often suffer from weak transferability against black-box FR models and permanently damage the identifiable information that cannot fulfill the requirements of authorized operations such as forensics and authentication. To address these limitations, we propose ErasableMask, a robust and erasable privacy protection scheme against black-box FR models. Specifically, via rethinking the inherent relationship between surrogate FR models, ErasableMask introduces a novel meta-auxiliary attack, which boosts black-box transferability by learning more general features in a stable and balancing optimization strategy. It also offers a perturbation erasion mechanism that supports the erasion of semantic perturbations in protected face without degrading image quality. To further improve performance, ErasableMask employs a curriculum learning strategy to mitigate optimization conflicts between adversarial attack and perturbation erasion. Extensive experiments on the CelebA-HQ and FFHQ datasets demonstrate that ErasableMask achieves the state-of-the-art performance in transferability, achieving over 72% confidence on average in commercial FR systems. Moreover, ErasableMask also exhibits outstanding perturbation erasion performance, achieving over 90% erasion success rate.
Abstract:Multimodal large language models (MLLMs) are increasingly being applied in the medical field, particularly in medical imaging. However, developing MLLMs for ECG signals, which are crucial in clinical settings, has been a significant challenge beyond medical imaging. Previous studies have attempted to address this by converting ECGs into several text tags using an external classifier in a training-free manner. However, this approach significantly compresses the information in ECGs and underutilizes the reasoning capabilities of LLMs. In this work, we directly feed the embeddings of ECGs into the LLM through a projection layer, retaining more information about ECGs and better leveraging the reasoning abilities of LLMs. Our method can also effectively handle a common situation in clinical practice where it is necessary to compare two ECGs taken at different times. Recent studies found that MLLMs may rely solely on text input to provide answers, ignoring inputs from other modalities. We analyzed this phenomenon from a causal perspective in the context of ECG MLLMs and discovered that the confounder, severity of illness, introduces a spurious correlation between the question and answer, leading the model to rely on this spurious correlation and ignore the ECG input. Such models do not comprehend the ECG input and perform poorly in adversarial tests where different expressions of the same question are used in the training and testing sets. We designed a de-biased pre-training method to eliminate the confounder's effect according to the theory of backdoor adjustment. Our model performed well on the ECG-QA task under adversarial testing and demonstrated zero-shot capabilities. An interesting random ECG test further validated that our model effectively understands and utilizes the input ECG signal.
Abstract:Cardiovascular diseases (CVDs) present significant challenges for early and accurate diagnosis. While cardiac magnetic resonance imaging (CMR) is the gold standard for assessing cardiac function and diagnosing CVDs, its high cost and technical complexity limit accessibility. In contrast, electrocardiography (ECG) offers promise for large-scale early screening. This study introduces CardiacNets, an innovative model that enhances ECG analysis by leveraging the diagnostic strengths of CMR through cross-modal contrastive learning and generative pretraining. CardiacNets serves two primary functions: (1) it evaluates detailed cardiac function indicators and screens for potential CVDs, including coronary artery disease, cardiomyopathy, pericarditis, heart failure and pulmonary hypertension, using ECG input; and (2) it enhances interpretability by generating high-quality CMR images from ECG data. We train and validate the proposed CardiacNets on two large-scale public datasets (the UK Biobank with 41,519 individuals and the MIMIC-IV-ECG comprising 501,172 samples) as well as three private datasets (FAHZU with 410 individuals, SAHZU with 464 individuals, and QPH with 338 individuals), and the findings demonstrate that CardiacNets consistently outperforms traditional ECG-only models, substantially improving screening accuracy. Furthermore, the generated CMR images provide valuable diagnostic support for physicians of all experience levels. This proof-of-concept study highlights how ECG can facilitate cross-modal insights into cardiac function assessment, paving the way for enhanced CVD screening and diagnosis at a population level.
Abstract:While interpretability research has shed light on some internal algorithms utilized by transformer-based LLMs, reasoning in natural language, with its deep contextuality and ambiguity, defies easy categorization. As a result, formulating clear and motivating questions for circuit analysis that rely on well-defined in-domain and out-of-domain examples required for causal interventions is challenging. Although significant work has investigated circuits for specific tasks, such as indirect object identification (IOI), deciphering natural language reasoning through circuits remains difficult due to its inherent complexity. In this work, we take initial steps to characterize causal reasoning in LLMs by analyzing clear-cut cause-and-effect sentences like "I opened an umbrella because it started raining," where causal interventions may be possible through carefully crafted scenarios using GPT-2 small. Our findings indicate that causal syntax is localized within the first 2-3 layers, while certain heads in later layers exhibit heightened sensitivity to nonsensical variations of causal sentences. This suggests that models may infer reasoning by (1) detecting syntactic cues and (2) isolating distinct heads in the final layers that focus on semantic relationships.