Abstract:Learning manipulation skills from human demonstration videos offers a promising path toward generalizable and interpretable robotic intelligence-particularly through the lens of actionable affordances. However, transferring such knowledge remains challenging due to: 1) a lack of large-scale datasets with precise affordance annotations, and 2) insufficient exploration of affordances in diverse manipulation contexts. To address these gaps, we introduce HOVA-500K, a large-scale, affordance-annotated dataset comprising 500,000 images across 1,726 object categories and 675 actions. We also release a standardized benchmarking suite for multi-modal affordance reasoning. Built upon HOVA-500K, we present GLOVER++, a global-to-local affordance training framework that effectively transfers actionable affordance knowledge from human demonstrations to downstream open-vocabulary reasoning tasks. GLOVER++ achieves state-of-the-art results on the HOVA-500K benchmark and demonstrates strong generalization across diverse downstream robotic manipulation tasks. By explicitly modeling actionable affordances, GLOVER++ facilitates robust transfer across scenes, modalities, and tasks. We hope that HOVA-500K and the GLOVER++ framework will serve as valuable resources for bridging the gap between human demonstrations and robotic manipulation capabilities.
Abstract:Data surveillance has become more covert and pervasive with AI algorithms, which can result in biased social classifications. Appearance offers intuitive identity signals, but what does it mean to let AI observe and speculate on them? We introduce AI-rays, an interactive installation where AI generates speculative identities from participants' appearance which are expressed through synthesized personal items placed in participants' bags. It uses speculative X-ray visions to contrast reality with AI-generated assumptions, metaphorically highlighting AI's scrutiny and biases. AI-rays promotes discussions on modern surveillance and the future of human-machine reality through a playful, immersive experience exploring AI biases.
Abstract:Industrial AI systems are mostly end-to-end machine learning (ML) workflows. A typical recommendation or business intelligence system includes many online micro-services and offline jobs. We describe SQLFlow for developing such workflows efficiently in SQL. SQL enables developers to write short programs focusing on the purpose (what) and ignoring the procedure (how). Previous database systems extended their SQL dialect to support ML. SQLFlow (https://sqlflow.org/sqlflow ) takes another strategy to work as a bridge over various database systems, including MySQL, Apache Hive, and Alibaba MaxCompute, and ML engines like TensorFlow, XGBoost, and scikit-learn. We extended SQL syntax carefully to make the extension working with various SQL dialects. We implement the extension by inventing a collaborative parsing algorithm. SQLFlow is efficient and expressive to a wide variety of ML techniques -- supervised and unsupervised learning; deep networks and tree models; visual model explanation in addition to training and prediction; data processing and feature extraction in addition to ML. SQLFlow compiles a SQL program into a Kubernetes-native workflow for fault-tolerable execution and on-cloud deployment. Current industrial users include Ant Financial, DiDi, and Alibaba Group.