Dj
Abstract:Many existing multi-modality studies are based on the assumption of modality integrity. However, the problem of missing arbitrary modalities is very common in real life, and this problem is less studied, but actually important in the task of multi-modality person re-identification (Re-ID). To this end, we design a novel dynamic enhancement network (DENet), which allows missing arbitrary modalities while maintaining the representation ability of multiple modalities, for partial multi-modality person Re-ID. To be specific, the multi-modal representation of the RGB, near-infrared (NIR) and thermal-infrared (TIR) images is learned by three branches, in which the information of missing modalities is recovered by the feature transformation module. Since the missing state might be changeable, we design a dynamic enhancement module, which dynamically enhances modality features according to the missing state in an adaptive manner, to improve the multi-modality representation. Extensive experiments on multi-modality person Re-ID dataset RGBNT201 and vehicle Re-ID dataset RGBNT100 comparing to the state-of-the-art methods verify the effectiveness of our method in complex and changeable environments.
Abstract:Multi-spectral vehicle re-identification aims to address the challenge of identifying vehicles in complex lighting conditions by incorporating complementary visible and infrared information. However, in harsh environments, the discriminative cues in RGB and NIR modalities are often lost due to strong flares from vehicle lamps or sunlight, and existing multi-modal fusion methods are limited in their ability to recover these important cues. To address this problem, we propose a Flare-Aware Cross-modal Enhancement Network that adaptively restores flare-corrupted RGB and NIR features with guidance from the flare-immunized thermal infrared spectrum. First, to reduce the influence of locally degraded appearance due to intense flare, we propose a Mutual Flare Mask Prediction module to jointly obtain flare-corrupted masks in RGB and NIR modalities in a self-supervised manner. Second, to use the flare-immunized TI information to enhance the masked RGB and NIR, we propose a Flare-Aware Cross-modal Enhancement module that adaptively guides feature extraction of masked RGB and NIR spectra with prior flare-immunized knowledge from the TI spectrum. Third, to extract common informative semantic information from RGB and NIR, we propose an Inter-modality Consistency loss that enforces semantic consistency between the two modalities. Finally, to evaluate the proposed FACENet in handling intense flare, we introduce a new multi-spectral vehicle re-ID dataset, called WMVEID863, with additional challenges such as motion blur, significant background changes, and particularly intense flare degradation. Comprehensive experiments on both the newly collected dataset and public benchmark multi-spectral vehicle re-ID datasets demonstrate the superior performance of the proposed FACENet compared to state-of-the-art methods, especially in handling strong flares. The code and dataset will be released soon.
Abstract:Cooperative perception enabled by V2X Communication technologies can significantly improve the perception performance of autonomous vehicles beyond the limited perception ability of the individual vehicles, therefore, improving the safety and efficiency of autonomous driving in intelligent transportation systems. However, in order to fully reap the benefits of cooperative perception in practice, the impacts of imperfect V2X communication, i.e., communication errors and disruptions, need to be understood and effective remedies need to be developed to alleviate their adverse impacts. Motivated by this need, we propose a novel INterruption-aware robust COoperative Perception (V2X-INCOP) solution for V2X communication-aided autonomous driving, which leverages historical information to recover missing information due to interruption. To achieve comprehensive recovery, we design a communication adaptive multi-scale spatial-temporal prediction model to extract multi-scale spatial-temporal features based on V2X communication conditions and capture the most significant information for the prediction of the missing information. To further improve recovery performance, we adopt a knowledge distillation framework to give direct supervision to the prediction model and a curriculum learning strategy to stabilize the training of the model. Our experiments on three public cooperative perception datasets demonstrate that our proposed method is effective in alleviating the impacts of communication interruption on cooperative perception.
Abstract:The neural network has become an integral part of modern software systems. However, they still suffer from various problems, in particular, vulnerability to adversarial attacks. In this work, we present a novel program reasoning framework for neural-network verification, which we refer to as symbolic reasoning. The key components of our framework are the use of the symbolic domain and the quadratic relation. The symbolic domain has very flexible semantics, and the quadratic relation is quite expressive. They allow us to encode many verification problems for neural networks as quadratic programs. Our scheme then relaxes the quadratic programs to semidefinite programs, which can be efficiently solved. This framework allows us to verify various neural-network properties under different scenarios, especially those that appear challenging for non-symbolic domains. Moreover, it introduces new representations and perspectives for the verification tasks. We believe that our framework can bring new theoretical insights and practical tools to verification problems for neural networks.
Abstract:Vision-centric joint perception and prediction (PnP) has become an emerging trend in autonomous driving research. It predicts the future states of the traffic participants in the surrounding environment from raw RGB images. However, it is still a critical challenge to synchronize features obtained at multiple camera views and timestamps due to inevitable geometric distortions and further exploit those spatial-temporal features. To address this issue, we propose a temporal bird's-eye-view pyramid transformer (TBP-Former) for vision-centric PnP, which includes two novel designs. First, a pose-synchronized BEV encoder is proposed to map raw image inputs with any camera pose at any time to a shared and synchronized BEV space for better spatial-temporal synchronization. Second, a spatial-temporal pyramid transformer is introduced to comprehensively extract multi-scale BEV features and predict future BEV states with the support of spatial-temporal priors. Extensive experiments on nuScenes dataset show that our proposed framework overall outperforms all state-of-the-art vision-based prediction methods.
Abstract:Oriented object detection is one of the most fundamental and challenging tasks in remote sensing, aiming at locating the oriented objects of numerous predefined object categories. Recently, deep learning based methods have achieved remarkable performance in detecting oriented objects in remote sensing imagery. However, a thorough review of the literature in remote sensing has not yet emerged. Therefore, we give a comprehensive survey of recent advances and cover many aspects of oriented object detection, including problem definition, commonly used datasets, evaluation protocols, detection frameworks, oriented object representations, and feature representations. Besides, we analyze and discuss state-of-the-art methods. We finally discuss future research directions to put forward some useful research guidance. We believe that this survey shall be valuable to researchers across academia and industry.
Abstract:Recently, unsupervised domain adaptation in satellite pose estimation has gained increasing attention, aiming at alleviating the annotation cost for training deep models. To this end, we propose a self-training framework based on the domain-agnostic geometrical constraints. Specifically, we train a neural network to predict the 2D keypoints of a satellite and then use PnP to estimate the pose. The poses of target samples are regarded as latent variables to formulate the task as a minimization problem. Furthermore, we leverage fine-grained segmentation to tackle the information loss issue caused by abstracting the satellite as sparse keypoints. Finally, we iteratively solve the minimization problem in two steps: pseudo-label generation and network training. Experimental results show that our method adapts well to the target domain. Moreover, our method won the 1st place on the sunlamp task of the second international Satellite Pose Estimation Competition.
Abstract:Bayesian optimization (BO), while proved highly effective for many black-box function optimization tasks, requires practitioners to carefully select priors that well model their functions of interest. Rather than specifying by hand, researchers have investigated transfer learning based methods to automatically learn the priors, e.g. multi-task BO (Swersky et al., 2013), few-shot BO (Wistuba and Grabocka, 2021) and HyperBO (Wang et al., 2022). However, those prior learning methods typically assume that the input domains are the same for all tasks, weakening their ability to use observations on functions with different domains or generalize the learned priors to BO on different search spaces. In this work, we present HyperBO+: a pre-training approach for hierarchical Gaussian processes that enables the same prior to work universally for Bayesian optimization on functions with different domains. We propose a two-step pre-training method and analyze its appealing asymptotic properties and benefits to BO both theoretically and empirically. On real-world hyperparameter tuning tasks that involve multiple search spaces, we demonstrate that HyperBO+ is able to generalize to unseen search spaces and achieves lower regrets than competitive baselines.
Abstract:Efficient collaboration between engineers and radiologists is important for image reconstruction algorithm development and image quality evaluation in magnetic resonance imaging (MRI). Here, we develop CloudBrain-ReconAI, an online cloud computing platform, for algorithm deployment, fast and blind reader study. This platform supports online image reconstruction using state-of-the-art artificial intelligence and compressed sensing algorithms with applications to fast imaging and high-resolution diffusion imaging. Through visiting the website, radiologists can easily score and mark the images. Then, automatic statistical analysis will be provided. CloudBrain-ReconAI is now open accessed at https://csrc.xmu.edu.cn/CloudBrain.html and will be continually improved to serve the MRI research community.
Abstract:Exponential function is a fundamental signal form in general signal processing and biomedical applications, such as magnetic resonance spectroscopy and imaging. How to reduce the sampling time of these signals is an important problem. Sub-Nyquist sampling can accelerate signal acquisition but bring in artifacts. Recently, the low rankness of these exponentials has been applied to implicitly constrain the deep learning network through the unrolling of low rank Hankel factorization algorithm. However, only depending on the implicit low rank constraint cannot provide the robust reconstruction, such as sampling rate mismatches. In this work, by introducing the explicit low rank prior to constrain the deep learning, we propose an Alternating Deep Low Rank approach (ADLR) that utilizes deep learning and optimization solvers alternately. The former solver accelerates the reconstruction while the latter one corrects the reconstruction error from the mismatch. The experiments on both general exponential functions and realistic biomedical magnetic resonance data show that, compared with the state-of-the-art methods, ADLR can achieve much lower reconstruction error and effectively alleviates the decrease of reconstruction quality with sampling rate mismatches.