Abstract:Large deep learning models have achieved significant success in various tasks. However, the performance of a model can significantly degrade if it is needed to train on datasets with noisy labels with misleading or ambiguous information. To date, there are limited investigations on how to restore performance when model degradation has been incurred by noisy label data. Inspired by the ``forgetting mechanism'' in neuroscience, which enables accelerating the relearning of correct knowledge by unlearning the wrong knowledge, we propose a robust model restoration and refinement (MRR) framework COLUR, namely Confidence-Oriented Learning, Unlearning and Relearning. Specifically, we implement COLUR with an efficient co-training architecture to unlearn the influence of label noise, and then refine model confidence on each label for relearning. Extensive experiments are conducted on four real datasets and all evaluation results show that COLUR consistently outperforms other SOTA methods after MRR.
Abstract:Machine Unlearning (MU) technology facilitates the removal of the influence of specific data instances from trained models on request. Despite rapid advancements in MU technology, its vulnerabilities are still underexplored, posing potential risks of privacy breaches through leaks of ostensibly unlearned information. Current limited research on MU attacks requires access to original models containing privacy data, which violates the critical privacy-preserving objective of MU. To address this gap, we initiate an innovative study on recalling the forgotten class memberships from unlearned models (ULMs) without requiring access to the original one. Specifically, we implement a Membership Recall Attack (MRA) framework with a teacher-student knowledge distillation architecture, where ULMs serve as noisy labelers to transfer knowledge to student models. Then, it is translated into a Learning with Noisy Labels (LNL) problem for inferring the correct labels of the forgetting instances. Extensive experiments on state-of-the-art MU methods with multiple real datasets demonstrate that the proposed MRA strategy exhibits high efficacy in recovering class memberships of unlearned instances. As a result, our study and evaluation have established a benchmark for future research on MU vulnerabilities.
Abstract:As AI evolves, collaboration among heterogeneous models helps overcome data scarcity by enabling knowledge transfer across institutions and devices. Traditional Federated Learning (FL) only supports homogeneous models, limiting collaboration among clients with heterogeneous model architectures. To address this, Heterogeneous Federated Learning (HtFL) methods are developed to enable collaboration across diverse heterogeneous models while tackling the data heterogeneity issue at the same time. However, a comprehensive benchmark for standardized evaluation and analysis of the rapidly growing HtFL methods is lacking. Firstly, the highly varied datasets, model heterogeneity scenarios, and different method implementations become hurdles to making easy and fair comparisons among HtFL methods. Secondly, the effectiveness and robustness of HtFL methods are under-explored in various scenarios, such as the medical domain and sensor signal modality. To fill this gap, we introduce the first Heterogeneous Federated Learning Library (HtFLlib), an easy-to-use and extensible framework that integrates multiple datasets and model heterogeneity scenarios, offering a robust benchmark for research and practical applications. Specifically, HtFLlib integrates (1) 12 datasets spanning various domains, modalities, and data heterogeneity scenarios; (2) 40 model architectures, ranging from small to large, across three modalities; (3) a modularized and easy-to-extend HtFL codebase with implementations of 10 representative HtFL methods; and (4) systematic evaluations in terms of accuracy, convergence, computation costs, and communication costs. We emphasize the advantages and potential of state-of-the-art HtFL methods and hope that HtFLlib will catalyze advancing HtFL research and enable its broader applications. The code is released at https://github.com/TsingZ0/HtFLlib.
Abstract:Knowledge Graphs (KGs) structure real-world entities and their relationships into triples, enhancing machine reasoning for various tasks. While domain-specific KGs offer substantial benefits, their manual construction is often inefficient and requires specialized knowledge. Recent approaches for knowledge graph construction (KGC) based on large language models (LLMs), such as schema-guided KGC and reference knowledge integration, have proven efficient. However, these methods are constrained by their reliance on manually defined schema, single-document processing, and public-domain references, making them less effective for domain-specific corpora that exhibit complex knowledge dependencies and specificity, as well as limited reference knowledge. To address these challenges, we propose LKD-KGC, a novel framework for unsupervised domain-specific KG construction. LKD-KGC autonomously analyzes document repositories to infer knowledge dependencies, determines optimal processing sequences via LLM driven prioritization, and autoregressively generates entity schema by integrating hierarchical inter-document contexts. This schema guides the unsupervised extraction of entities and relationships, eliminating reliance on predefined structures or external knowledge. Extensive experiments show that compared with state-of-the-art baselines, LKD-KGC generally achieves improvements of 10% to 20% in both precision and recall rate, demonstrating its potential in constructing high-quality domain-specific KGs.
Abstract:Digital Twin-a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, and decision-making-combined with recent advances in machine learning (ML), offers new opportunities for proactive control strategies in autonomous manufacturing. However, achieving real-time decision-making with Digital Twins requires efficient optimization driven by accurate predictions of highly nonlinear manufacturing systems. This paper presents a simultaneous multi-step Model Predictive Control (MPC) framework for real-time decision-making, using a multi-variate deep neural network (DNN), named Time-Series Dense Encoder (TiDE), as the surrogate model. Different from the models in conventional MPC which only provide one-step ahead prediction, TiDE is capable of predicting future states within the prediction horizon in one shot (multi-step), significantly accelerating MPC. Using Directed Energy Deposition additive manufacturing as a case study, we demonstrate the effectiveness of the proposed MPC in achieving melt pool temperature tracking to ensure part quality, while reducing porosity defects by regulating laser power to maintain melt pool depth constraints. In this work, we first show that TiDE is capable of accurately predicting melt pool temperature and depth. Second, we demonstrate that the proposed MPC achieves precise temperature tracking while satisfying melt pool depth constraints within a targeted dilution range (10%-30%), reducing potential porosity defects. Compared to the PID controller, MPC results in smoother and less fluctuating laser power profiles with competitive or superior melt pool temperature control performance. This demonstrates MPC's proactive control capabilities, leveraging time-series prediction and real-time optimization, positioning it as a powerful tool for future Digital Twin applications and real-time process optimization in manufacturing.
Abstract:Software systems often record important runtime information in logs to help with troubleshooting. Log-based anomaly detection has become a key research area that aims to identify system issues through log data, ultimately enhancing the reliability of software systems. Traditional deep learning methods often struggle to capture the semantic information embedded in log data, which is typically organized in natural language. In this paper, we propose LogLLM, a log-based anomaly detection framework that leverages large language models (LLMs). LogLLM employs BERT for extracting semantic vectors from log messages, while utilizing Llama, a transformer decoder-based model, for classifying log sequences. Additionally, we introduce a projector to align the vector representation spaces of BERT and Llama, ensuring a cohesive understanding of log semantics. Unlike conventional methods that require log parsers to extract templates, LogLLM preprocesses log messages with regular expressions, streamlining the entire process. Our framework is trained through a novel three-stage procedure designed to enhance performance and adaptability. Experimental results across four public datasets demonstrate that LogLLM outperforms state-of-the-art methods. Even when handling unstable logs, it effectively captures the semantic meaning of log messages and detects anomalies accurately.
Abstract:Building effective machine learning (ML) workflows to address complex tasks is a primary focus of the Automatic ML (AutoML) community and a critical step toward achieving artificial general intelligence (AGI). Recently, the integration of Large Language Models (LLMs) into ML workflows has shown great potential for automating and enhancing various stages of the ML pipeline. This survey provides a comprehensive and up-to-date review of recent advancements in using LLMs to construct and optimize ML workflows, focusing on key components encompassing data and feature engineering, model selection and hyperparameter optimization, and workflow evaluation. We discuss both the advantages and limitations of LLM-driven approaches, emphasizing their capacity to streamline and enhance ML workflow modeling process through language understanding, reasoning, interaction, and generation. Finally, we highlight open challenges and propose future research directions to advance the effective application of LLMs in ML workflows.
Abstract:Data and model heterogeneity are two core issues in Heterogeneous Federated Learning (HtFL). In scenarios with heterogeneous model architectures, aggregating model parameters becomes infeasible, leading to the use of prototypes (i.e., class representative feature vectors) for aggregation and guidance. However, they still experience a mismatch between the extra guiding objective and the client's original local objective when aligned with global prototypes. Thus, we propose a Federated Learning-to-Guide (FedL2G) method that adaptively learns to guide local training in a federated manner and ensures the extra guidance is beneficial to clients' original tasks. With theoretical guarantees, FedL2G efficiently implements the learning-to-guide process using only first-order derivatives w.r.t. model parameters and achieves a non-convex convergence rate of O(1/T). We conduct extensive experiments on two data heterogeneity and six model heterogeneity settings using 14 heterogeneous model architectures (e.g., CNNs and ViTs) to demonstrate FedL2G's superior performance compared to six counterparts.
Abstract:Virtual Try-On (VTON) has become a transformative technology, empowering users to experiment with fashion without ever having to physically try on clothing. However, existing methods often struggle with generating high-fidelity and detail-consistent results. While diffusion models, such as Stable Diffusion series, have shown their capability in creating high-quality and photorealistic images, they encounter formidable challenges in conditional generation scenarios like VTON. Specifically, these models struggle to maintain a balance between control and consistency when generating images for virtual clothing trials. OutfitAnyone addresses these limitations by leveraging a two-stream conditional diffusion model, enabling it to adeptly handle garment deformation for more lifelike results. It distinguishes itself with scalability-modulating factors such as pose, body shape and broad applicability, extending from anime to in-the-wild images. OutfitAnyone's performance in diverse scenarios underscores its utility and readiness for real-world deployment. For more details and animated results, please see \url{https://humanaigc.github.io/outfit-anyone/}.
Abstract:Detecting anomalies in business processes is crucial for ensuring operational success. While many existing methods rely on statistical frequency to detect anomalies, it's important to note that infrequent behavior doesn't necessarily imply undesirability. To address this challenge, detecting anomalies from a semantic viewpoint proves to be a more effective approach. However, current semantic anomaly detection methods treat a trace (i.e., process instance) as multiple event pairs, disrupting long-distance dependencies. In this paper, we introduce DABL, a novel approach for detecting semantic anomalies in business processes using large language models (LLMs). We collect 143,137 real-world process models from various domains. By generating normal traces through the playout of these process models and simulating both ordering and exclusion anomalies, we fine-tune Llama 2 using the resulting log. Through extensive experiments, we demonstrate that DABL surpasses existing state-of-the-art semantic anomaly detection methods in terms of both generalization ability and learning of given processes. Users can directly apply DABL to detect semantic anomalies in their own datasets without the need for additional training. Furthermore, DABL offers the capability to interpret the causes of anomalies in natural language, providing valuable insights into the detected anomalies.